

Interactions of Particles and Matter

- understanding the LHC detectors requires a basic understanding of the interaction of high energy particles and matter
- we will cover here:
 - photons/electrons in nuclear materials (em cal.)
 - bremsstrahlung
 - minimum ionization (charged tracks)
 - multiple scattering
 - secondary hadron production/nuclear interaction

see http://pdg.lbl.gov/2005/reviews/passagerpp.pdf

Photons in matter:

- low energies (< 100 keV): photoelectric effect
- medium energy (~ 1 MeV): Compton scattering
- high energy (> 10 MeV):
 e⁺e⁻ pair production

Each of these leads to electrons being ejected from atoms...e.m. showers

Photons and Matter

- we are mainly interested in very high energy photons, $E_{\gamma} > 1$ GeV where pair production dominates
- a beam of such high energy photons has an intensity which drops exponentially with depth:

$$I(x) = I_0 e^{-\mu x}$$

 μ is the linear absorption coefficient; probability of radiation per unit distance traversed:

• but then we have high energy electrons...process repeats

Radiation Leng	gth	
$1/X_0 = \frac{4\alpha N_A Z(Z+1) r_e^2 \log(1)}{A}$	$83Z^{-1/3})$	
 higher Z materials have shorter radiation length 	material	X ₀ g/cm ²
 want high-Z material for e.m. calorimeter 	H ₂	63
 want as little material as possible in front of the calorimeter! 	AI	24
	Fe	13.8
• lead: $\rho = 11.4 \text{ g/cm}^3$	Pb	6.3
$\Rightarrow X_0 = 5.5 \text{ mm}$		

Hadronic Showers

- interactions of pions/kaons in material: nuclear interaction length
- lead ~ steel = 17 cm
- about 5% different for pi⁺ and pi⁻
- for heavy (high Z) materials we see that the nuclear interaction length is a lot longer than the electromagnetic one

	material	X ₀ (g/cm ²)	λ_n (g/cm ²)	
 snowers start late, more diffuse 	H ₂	63	52.4	
	AI	24	106	
 and don't forget charge exchange! 	Fe	13.8	132	
charge exchange:	Pb	6.3	193	

Bethe-Bloch and MIPs

- high energy charged particles lose energy by ionization of atoms
- specific ionization (dE/dx) depends on material density
- express in terms of MeV/(g/cm²)
- $1/\beta^2$, rel. rise.
- minimum at $\beta \gamma \sim 3$

Bethe-Bloch and MIPs

 $-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2 - \frac{\delta}{2}\right]$

- Bethe-Block formula describes <u>average</u> energy loss
- example: MIP in silicon

dE/dx: 1.6 MeV/(g/cm2) x 2.33 g/cm³

= 3.7 MeV/cm (not much!)

 amount of ionization fluctuates according to "Landau" distribution (actually Vavilov)

Multiple Scattering

- as they ionize materials, high energy charged particles change their direction with each interaction
- distribution dominated by gaussian of width θ_0
- high angle scattering tail to distribution
- important for relatively low-energy particles (~ few GeV): rms angle given by

$$heta_0 = rac{13.6 {
m MeV}}{eta c p} z \sqrt{x/X_0} \left[1 + 0.038 \ln(x/X_0)
ight]$$

• for a 1 GeV pion traversing 1 X₀, $\theta_0 \sim 14$ mrad

• for a 10 GeV pion traversing 1 X_0 , $\theta_0 \sim 1.4$ mrad

Muon Bremsstrahlung

1000

- muons are much heavier than electrons, but at high energies radiative losses begin to dominate:
- in other words, at high energies muons can sometimes behave more like electrons!

- effective radiation length decreases at high energy and so (late) e.m. showers can develop in the detector
- pions, too, but that's less of a problem...

Tracking Detectors

- For tracking detectors we want as little material as possible to minimize multiple scattering; two approaches:
 - gas/wire chambers (like CDF's COT)
 - solid-state detectors (silicon)
- Silicon is now the dominant sensor material in use for tracking detectors at the LHC and we will focus on that
- however, first a word about drift chambers...

Drift Cells

- tubes with wire at +HV draw ionization electrons; avalanche near wire
- stack up the tubes, measure time of arrival of the ionization pulse
- drift: ~5 cm/μs (50 μm/ns)
- find track from tangents to circles
- can get about 150 µm position resolution
- but: a lot of material!

- in doped silicon can create "p-n" junction
- free carriers diffuse across junction, electrons neutralizing the holes:

- applying very large reverse-bias voltage to p-n junction "fully depletes" the silicon, leaving E field
- for 300 μ m thickness, typically V_b ~ 100 V
- geometry of typical silicon detector:

- pixel detector: deposited charge sensed by small pixels on one side of sensor
 - many channels, expensive
 - more material
 - easy pattern recognition
- strip detector: deposited charge sensed by long narrow strips
 - fewer channels, less expensive
 - less material
 - pattern recognition difficult!

- charge sharing used to determine where charged particle passed through detector
- can get resolution much smaller than strip or pixel size, onthe order of 10-20 μm

Calorimetry

- want heavy material to cause brem/pair production for initial electromagnetic section, and fine sampling
- for hadron calorimetry, larger towers and coarser sampling in depth
- two technologies for em calorimeters:
 - exotic crystals (CsI, PbWO, BGO, ...)
 - liquid argon
- can achieve remarkable precision
- relative energy uncertainty decreases with E !

CMS and ATLAS

- two different approaches to the LHC problem!
- CMS sinks, ATLAS floats!
- both need to employ detectors with very fast signals and readout
- both need to be very radiation hard

	ATLAS	CMS
tracking	silicon/gas	silicon
em cal	liquid Ar	PbWO
had cal	steel/scint.	brass/scint.
muon	RPCs/drift	RPCs/drift

ATLAS Inner Detector

• silicon pixels surrounded by silicon strips:

• 2 Tesla solenoid immediately outside tracker

CMS Electromagnetic Calorimeter

- lead tungstate crystals
- projective geometry
- avalanche photodiode readout

This is from test beams - does not tell the whole story!

Material Budget

2

1.5

0.5

×1×

The Mystery of Triggering

- at the design rate, every beam crossing gives a collision (usually minimum bias)
- cannot read out detector on every event (1Mb/event)
- do not have bandwidth to store events
- cannot process every event later
- must have trigger to decide what to keep/reject
- trigger is very sophisticated and complicated!
- triggers are arranged in levels of increasing complexity, and decreasing rate

CMS Level 1 Trigger

CMS L1 Thresholds

• need energy thresholds to control rates!

		AND ADDRESS AND ADDRESS						
	е	ee	τ	ττ	j	jj	jijj	jjjj
Low \mathcal{L}	24	18	95	75	150	115	95	75
High ${\cal L}$	35	20	180	110	285	225	125	105
	τ e	je	MET	e +Met	ј+МЕТ	e(NI)	ee(NI)	Σ et
Low $\mathcal L$	80,14	125,14	275	12,175	65,175	NA*	NA*	1000
High ${\cal L}$	125,20	165,20	350	18,250	95,250	58	28	1500
	μ	μμ	μ	μτ	μ j	µ+ ET	μ +ΜΕΤ	Rate:
Low $\mathcal L$	10	3	4,12	4,80	4,80	4,600	4,140	25 kHz
High $\mathcal L$	25	8,5	5,32	5,140	5,155	5,800	5,200	25 kHz

ATLAS L1 Thresholds

Selection High-p _T Thresholds	2 x 10 ³³ cm ⁻² s ⁻¹	10 ³⁴ cm ⁻² s ⁻¹
MU20 (20)	0.8	4.0
2MU6	0.2	1.0
EM25I (30)	12.0	22.0
2EM15I (20)	4.0	5.0
(290)	0.2	0.2
3J90 (130)	0.2	0.2
4J65 (90)	0.2	0.2
(60 + xE60) (100+100)	0.4	0.5
(60+60)	2.0	1.0
MU10 + EM15I	0.1	0.4
Others (pre-scales, calibration, ?)	5.0	5.0
Fotal	~ 25	~ 40

Analyzing the Data

- calibration/alignment studies
 - offline corrections
 - cal clusters \rightarrow jets, electrons, etc.
 - tracker hit clusters \rightarrow track segments \rightarrow tracks
 - high level objects: e/γ , μ , τ , jets, ...
- perform primary reconstruction
- split into data streams
- distribute to computing centers for selection
- lather, rinse, and repeat...