Phys 126 Homework 1 (Due FRI April 6, 2:10pm)

Reading: Chapters 1-3
The cosmic expansion obeys

$$
v=H r
$$

where $H_{0}=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$.
1.1) Using equation at what distance r is an object receding at a waking pace? Give your answer in a) meters, b) lightyears and c) megaparsecs.
1.2) Using equation at what distance r is an object receding at a speed equal to the speed of the sun moving around our galaxy? Give your answer in a) meters, b) lightyears and c) megaparsecs. Hint: You will need to figure out this speed somehow. If do not have enough information, Google can be useful here!
1.3) Using equation at what distance r is an object receding at th speed of light? Give your answer in a) meters, b) lightyears and c) megaparsecs.
1.4) $\quad H_{0}^{-1}$ has units of time. Convert the given value to a) seconds and b) years.
1.5) The equation $H^{2}=\frac{8 \pi G}{3} \rho$ relates values of H to values of mass density ρ. a) Use this expression to "convert" the above value of H_{0} to a mass density ρ_{0}. b) Compare ρ_{0} to the density of the earth. c) Compare ρ_{0} to the density of the solar system.

