1. A thin plano-convex lens with refractive index $\mathrm{n}_{\mathrm{g}}=1.5$ is submerged in oil with refractive index $\mathrm{n}_{\text {oil }}=2.0$. A $1-\mathrm{cm}$ high object (y_{0}) is 20 cm away from the lens.
1) ($\mathbf{1 0}$ points) Find the focal length of the lens in the oil.
2) ($\mathbf{1 0}$ points) Find the size of the image.

2. A beam-reducer is made of a thin converging lens with $\mathrm{f}_{1}=3 \mathrm{~cm}$ and a thin diverging lens with $\mathrm{f}_{2}=-1 \mathrm{~cm}$, separated by $\mathrm{d}=2 \mathrm{~cm}$.

1) ($\mathbf{1 5}$ points) Find the ABCD-matrix for such a lens combination.
2) ($\mathbf{1 0}$ points) Show that both system focal points F_{1} an F_{2} are at infinity.
3) ($\mathbf{1 0}$ points) A ray parallel to the optical axis is incident on the first lens from left at a height ℓ_{0} as described below

$$
\binom{\ell_{0}}{\alpha_{0}}=\binom{\ell_{0}}{0} .
$$

Show that the outgoing ray after the second lens is also parallel to the optical axis and the height now is reduced by 3 or at $\ell_{0} / 3$,

$$
\binom{\ell_{f}}{\alpha_{f}}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\binom{\ell_{0}}{0}=\binom{\ell_{0} / 3}{0}
$$

3. Two glass slides are pressed together so that a small wedge-shaped air gap is formed. The refractive index of the air can be taken as $n_{\text {air }}=1$. When the air gap is viewed close to the normal incidence under the illumination of a monochromatic light source with $\lambda_{1}=6000 \AA$ (red), one can see 30 fringes across the lateral dimension of the air gap.
1) ($\mathbf{1 0}$ points) Find the thickness change across the lateral dimension of the gap.
2) (5 points) If the illuminating source is replaced with a monochromatic light with $\lambda_{2}=4500 \AA$ (blue), roughly how many fringes will one see?

4. An Earth-based CO_{2} laser beam with a diameter $\mathrm{d}=10 \mathrm{~cm}$ and a wavelength $\lambda=10$ $\mu \mathrm{m}$ is pointed at the Moon surface. The distance between the Earth and the Moon is $\mathrm{L}=3.84 \times 10^{5} \mathrm{~km}$.
1) ($\mathbf{1 0}$ points) Find the diameter of the CO_{2} laser beam when it reaches the surface of the Moon due to diffraction.
2) (5 points) Find the maximum intensity of the CO_{2} laser beam at the Moon surface in terms of the initial intensity I_{0} of the laser when it leaves the surface of the Earth.
5. A monochromatic light beam, traveling inside a glass with refractive index $\mathrm{n}_{\mathrm{g}}=2$, is incident on a glass-air interface at angle θ_{1}.
1) (5 points) Find the Brewster angle (polarizing angle) $\theta_{1 \mathbf{B}}$ on the glass side.
2) ($\mathbf{1 0}$ points) At the Brewster angle $\theta_{1 \mathbf{B}}$, find the reflectance (i.e., $R_{s}=\left|r_{s}\right|^{2}$) for the TE component (i.e., s-polarized).
3) ($\mathbf{1 0}$ points) When $\theta_{1}=45^{\circ}$, the beam is totally reflected. For the TM component (i.e., p-polarized), find the electric field on the air side in terms of the p polarized component of the incident electric field.

6. ($\mathbf{2 0}$ points) Specify the polarization state for the following four un-normalized Jones vectors,
(a) $\left[\begin{array}{c}-\mathrm{i} \\ +\mathrm{i}\end{array}\right]$;
(b) $\left[\begin{array}{c}-1+i \\ 1+i\end{array}\right]$;
(c) $\left[\begin{array}{c}-1-i \\ 1+i\end{array}\right]$;
(d) $\left[\begin{array}{l}i \\ 4\end{array}\right]$.
7. A linearly polarized light beam with the electric field vector at $+45^{\circ}$ from the x axis passes through a quarter-wave plate (QWP) that is so oriented that the matrix of the quarter-wave plate is given by

$$
M_{\mathrm{QWP}}=\left(\begin{array}{cc}
1 & 0 \\
0 & -\mathrm{i}
\end{array}\right)
$$

1) ($\mathbf{1 0}$ points) Find the polarization state of the beam after the QWP.
2) ($\mathbf{1 0}$ points) Show that a combination of a quarter-wave plate with OA parallel to x-axis, a linear polarizer with TA at $+45^{\circ}$ from the x-axis, and another quarter-wave plate with OA parallel to y-axis is a circular polarizer that passes one circularly polarized component of an incident light while blocking the other circularly polarized component.
(Hint: find the Jones matrix of the combination and show that only one circularly polarized light can pass this device)
