Reading materials:

Pedrotti $3^{\text {rd }}$ Edition: \quad Chapter 18: 18-1 through 18-10
Lecture Notes: pp. 24-33

Homework: (Pedrotti $3^{\text {rd }}$ Edition)
From Pedrotti $3^{\text {rd }}$ Edition Chapter 5 and Chapter 18

1. Derive refraction matrix and translation matrix yourself
2. (Optional for extra point) Derive the reflection matrix using similar convention as the refraction matrix.
3. $18-1$
4. $18-3$
5. $18-9$
6. 18-12
7. 18-14
8. 4-11
9. 4-12
10. 4-13
11. 5-4
12. $5-7$
13. (Due 5/12/14) Landscape Lens: Perform the Introductory Exercise on Landscape Lens using OSLOEDU software. Show YOUR results by (1) displaying the starting "Surface Data" and "Lens Drawing" for paraxial rays and non-paraxial rays; and (2) displaying your optimized "Surface Data" and "Lens Drawing" for paraxial rays and non-paraxial rays. (You may also try the following condition for start: and "draw off").

| SRF | RADIUS | THICKNESS | APERTURE RADIUS | GLASS | SPE |
| :---: | :---: | ---: | :---: | :---: | :---: | :---: |
| OBJ | -- | $1.6000 \mathrm{e}+03$ | 582.352375 | AIR | $*$ |
| 1 | 21.807957 V | 4.000000 | 11.666830 S | BK7 C | |
| $\frac{27}{2}$ | 27.777778 | 12.647480 V | 9.997114 S | AIR | |
| AST | -- | 155.058604 S | 4.341641 AS | AIR | $*$ |
| IMS | -- | -- | 67.000000 | | $*$ |

14. (Due $5 / 12 / 14$) 18-23 Use the lens specifications and OSLOEDU to (a) find the focal length of Proctor photographic lens and (b) find the ABCD matrix for such a lens.
