Physics 108 Assignment#6 (due on 5/12/14)

Reading materials:

Pedrotti 3rd Edition: **Chapter 11:** 11-1 through 11-6

Chapter 12: 12-3, 12-4

Lecture Notes: pp. 54 - 67

Homework: (Pedrotti 3rd Edition)

1. When a single slit with width d is obliquely illuminated by a collimated optical beam with wavelength λ_0 at incidence angle θ_{inc} , show that the outgoing electric field as a function of angle θ_{out} far from the slit is given by

$$E(\theta_{out}) = E_{inc} \, cos \! \left(\frac{2\pi n}{\lambda_0} \, \rho - \omega t \right) \! \left(\frac{d}{\sqrt{\lambda_0 \rho}} \right) \! \left[\frac{sin \! \left(\frac{\pi nd \! \left(sin \, \theta_{out} - sin \, \theta_{inc} \right)}{\lambda_0} \right)}{\frac{\pi nd \! \left(sin \, \theta_{out} - sin \, \theta_{inc} \right)}{\lambda_0}} \right] \right]$$

- 2. 11-15
- 3. 11-20
- 4. 12-4
- 5. 12-6

Assignment#3 (**Due 5/12/14**):

13. Landscape Lens: Perform the Introductory Exercise on Landscape Lens using OSLOEDU software. Show YOUR results by (1) displaying the starting "Surface Data" and "Lens Drawing" for paraxial rays and non-paraxial rays; and (2) displaying your optimized "Surface Data" and "Lens Drawing" for paraxial rays and non-paraxial rays. (You may also try the following condition for start: and "draw off").

SRF OBJ	RADIUS	THICKNESS 1.6000e+03	APERTURE RADIUS 582.352375	GLASS AIR	SPE *
1 2	21.807957 V 27.777778	4.000000 12.647480 \	11.666830 S / 9.997114 S	BK7 AIR	С
AST		155.058604	4.341641 AS	AIR	*
IMS			67.000000		**

14. 18-23 Use the lens specifications and OSLOEDU to (a) find the focal length of Proctor photographic lens and (b) find the ABCD matrix for such a lens.