Physics 108 Homework Assignment#3 (due on 4/20/15 and 5/12/15)

Reading materials:

Pedrotti 3 rd Edition:	Chapter 18: 18-1 through 18-10
Lecture Notes:	pp. 24-33

Homework: (Pedrotti 3rd Edition)

From Pedrotti 3rd Edition Chapter 5 and Chapter 18

- 1. (Optional for extra point) Derive refraction matrix and translation matrix yourself
- 2. (**Optional for extra point**) Derive the reflection matrix using same convention.
- 3. A *thick* double meniscus lens in air is used to image an object placed at a distance $s_0 = 40$ cm in front of the lens

(a) Using the refraction equation $n_1/s_0 + n_2/s_i = (n_2 - n_1)/R$ and treating the lens as two spherical surfaces separated by 20 cm, find the location and the linear magnification of the image after refraction at the second surface; (b) Find the ABCD matrix for this lens; (c) Using the ABCD matrix, find the location after the second surface; (d) Using the ABCD matrix, find the linear magnification of the image.

- 4. 18-9
- 5. 18-12
- 6. 18-14
- 7. 4-11 (Math review)
- 8. 4-12 (Math review)
- 9. 4-13 (Math review)
- 10. 5-4 (Math review)

11. (**Due 5/11/15**) *Landscape Lens*: Perform the Introductory Exercise on Landscape Lens using OSLOEDU software. Show YOUR results by (1) displaying the starting "Surface Data" and "Lens Drawing" for paraxial rays and non-paraxial rays; and (2) displaying your optimized "Surface Data" and "Lens Drawing" for paraxial rays and non-paraxial rays. (You may also try the following condition for start: and "draw off").

SRF	RADIUS	THICKNESS	APERTURE RADIUS	GLASS SPE
OBJ		1.6000e+03	582.352375	AIR *
1	21.807957 V	4.000000	11.666830 s	BK7 C
2	27.77778	12.647480 v	9.997114 s	AIR
AST		155.058604 s	4.341641 AS	AIR *
IMS			67.000000	*

12. (**Due 5/11/15**) 18-23 Use the lens specifications and OSLOEDU to (a) find the focal length of Proctor photographic lens and (b) find the ABCD matrix for such a lens.