Reading materials:

Pedrotti $3{ }^{\text {rd }}$ Edition: \quad Chapter 18: 18-1 through 18-10
Lecture Notes: pp. 24-33

Homework: (Pedrotti $3^{\text {rd }}$ Edition)
From Pedrotti $3^{\text {rd }}$ Edition Chapter 5 and Chapter 18

1. (Optional for extra point) Derive refraction matrix and translation matrix yourself
2. (Optional for extra point) Derive the reflection matrix using same convention.
3. A thick double meniscus lens in air is used to image an object placed at a distance s_{0} $=40 \mathrm{~cm}$ in front of the lens

(a) Using the refraction equation $n_{1} / s_{o}+n_{2} / s_{i}=\left(n_{2}-n_{1}\right) / R$ and treating the lens as two spherical surfaces separated by 20 cm , find the location and the linear magnification of the image after refraction at the second surface; (b) Find the ABCD matrix for this lens; (c) Using the ABCD matrix, find the location after the second surface; (d) Using the ABCD matrix, find the linear magnification of the image.
4. $18-9$
5. $18-12$
6. $18-14$
7. 4-11 (Math review)
8. 4-12 (Math review)
9. 4-13 (Math review)
10. 5-4 (Math review)
11. (Due 5/11/15) Landscape Lens: Perform the Introductory Exercise on Landscape Lens using OSLOEDU software. Show YOUR results by (1) displaying the starting "Surface Data" and "Lens Drawing" for paraxial rays and non-paraxial rays; and (2) displaying your optimized "Surface Data" and "Lens Drawing" for paraxial rays and non-paraxial rays. (You may also try the following condition for start: and "draw off").

| SRF | RADIUS | THICKNESS | APERTURE RADIUS | GLASS | SPE |
| :---: | :---: | ---: | :---: | :---: | :---: | :---: |
| OBJ | -- | $1.6000 \mathrm{e}+03$ | 582.352375 | AIR | $*$ |
| 1 | 21.807957 V | 4.000000 | 11.666830 S | BK7 C | |
| 2 | 27.777778 | 12.647480 V | 9.997114 S | AIR | |
| AST | -- | 155.058604 S | 4.341641 AS | AIR | $*$ |
| IMS | -- | -- | 67.000000 | | $*$ |

12. (Due 5/11/15) 18-23 Use the lens specifications and OSLOEDU to (a) find the focal length of Proctor photographic lens and (b) find the ABCD matrix for such a lens.
