Physics 108 Assignment#6 (due on 5/11/15)

Reading materials:

Pedrotti 3rd Edition: **Chapter 11:** 11-1 through 11-6

Chapter 12: 12-3, 12-4

Lecture Notes: pp. 54 - 67

Homework: (Pedrotti 3rd Edition)

1. When a single slit with width d is obliquely illuminated by a collimated optical beam with wavelength λ_0 at incidence angle θ_{inc} , show that the outgoing electric field as a function of angle θ_{out} far from the slit is given by

$$E(\theta_{out}) = E_{inc} cos \Biggl(\frac{2\pi n}{\lambda_0} \rho - \omega t \Biggr) \Biggl(\frac{d}{\sqrt{\lambda_0 \rho}} \Biggr) \Biggl[\frac{sin \Biggl(\frac{\pi nd \bigl(sin \, \theta_{out} - sin \, \theta_{inc} \bigr)}{\lambda_0} \Bigr)}{\frac{\pi nd \bigl(sin \, \theta_{out} - sin \, \theta_{inc} \bigr)}{\lambda_0}} \Biggr] \Biggr]$$

- 2. 11-15
- 3. 11-20
- 4. 12-4
- 5. 12-6

Assignment#3 (**Due 5/11/15**):

11. **Landscape Lens**: Perform the Introductory Exercise on Landscape Lens using OSLOEDU software. Show YOUR results by (1) displaying the starting "Surface Data" and "Lens Drawing" for paraxial rays and non-paraxial rays; and (2) displaying your optimized "Surface Data" and "Lens Drawing" for paraxial rays and non-paraxial rays. (You may also try the following condition for start: and "draw off").

SRF	RADIUS	THICKNESS	APERTURE RADIUS	GLASS SPE
OBJ		1.6000e+03	582.352375	AIR *
1 2	21.807957 V	4.000000	11.666830 S	BK7 C
	27.777778	12.647480 \	9.997114 S	AIR
AST		155.058604	4.341641 AS	AIR *
IMS			67.000000	*

12. 18-23 Use the lens specifications and OSLOEDU to (a) find the focal length of Proctor photographic lens and (b) find the ABCD matrix for such a lens.