Reading materials:

Pedrotti $3^{\text {rd }}$ Edition: \quad Chapter 11: 11-1 through 11-6
Chapter 12: 12-3, 12-4
Lecture Notes:
pp. 54-67
Homework: (Pedrotti $3^{\text {rd }}$ Edition)

1. When a single slit with width d is obliquely illuminated by a collimated optical beam with wavelength λ_{0} at incidence angle $\theta_{\text {inc }}$, show that the outgoing electric field as a function of angle $\theta_{\text {out }}$ far from the slit is given by

$$
\mathrm{E}\left(\theta_{\text {out }}\right)=\mathrm{E}_{\text {inc }} \cos \left(\frac{2 \pi \mathrm{n}}{\lambda_{0}} \rho-\omega \mathrm{t}\right)\left(\frac{\mathrm{d}}{\sqrt{\lambda_{0} \rho}}\right)\left[\frac{\sin \left(\frac{\pi \mathrm{nd}\left(\sin \theta_{\text {out }}-\sin \theta_{\text {inc }}\right)}{\lambda_{0}}\right)}{\frac{\pi \mathrm{nd}\left(\sin \theta_{\text {out }}-\sin \theta_{\text {inc }}\right)}{\lambda_{0}}}\right]
$$

2. 11-15
3. 11-20
4. 12-4
5. 12-6

Assignment\#3 (Due 5/11/15):
11. Landscape Lens: Perform the Introductory Exercise on Landscape Lens using OSLOEDU software. Show YOUR results by (1) displaying the starting "Surface Data" and "Lens Drawing" for paraxial rays and non-paraxial rays; and (2) displaying your optimized "Surface Data" and "Lens Drawing" for paraxial rays and non-paraxial rays. (You may also try the following condition for start: and "draw off").

| SRF | RADIUS | THICKNESS | APERTURE RADIUS | GLASS | SPE |
| :---: | :---: | ---: | :---: | :---: | :---: | :---: |
| OBJ | -- | $1.6000 \mathrm{e}+03$ | 582.352375 | AIR | $*$ |
| 1 | 21.807957 V | 4.000000 | 11.666830 S | BK7 | |
| 2 | 27.777778 | 12.647480 V | 9.997114 S | AIR | |
| AST | -- | 155.058604 s | 4.341641 AS | AIR | $*$ |
| IMS | -- | -- | 67.000000 | | $*$ |

12. 18-23 Use the lens specifications and OSLOEDU to (a) find the focal length of Proctor photographic lens and (b) find the ABCD matrix for such a lens.
