Reading materials:

Pedrotti $3^{\text {rd }}$ Edition: \quad Chapter 1: 1-1; 1-2; 1-3;
Chapter 2: 2-1; 2-2; 2-4; 2-5; 2-6; 2-7; 2-8
Lecture Notes: pp. 1-17

Homework: (Pedrotti $3^{\text {rd }}$ Edition)

1. 2-4
2. 2-5
3. 2-6
4. $2-8$
5. 2-9
6. 2-10
7. 2-32
8. 2-34
9. Derive the refraction equation with $\mathrm{n}_{2}<\mathrm{n}_{1}, \mathrm{~s}_{1}>0$ (the object is on the left side or the side before refraction), and $\mathrm{R}<0$ (the center of curvature C on the left side or the side before refraction). From your result, show that $n_{1} / s_{1}+n_{2} / s_{1}{ }^{\prime}=\left(n_{2}-n_{1}\right) / R$ if the sign convention for $\mathrm{s}_{1}, \mathrm{R}$, and s_{1} ' is used.
10. Optional for two extra points: Derive the refraction equation with $\mathrm{n}_{2}<\mathrm{n}_{1}, \mathrm{~s}_{1}<0$ (the object is on the right side or the side after refraction), and $\mathrm{R}>0$
