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HISTORY 
 In 1926, experimental physicist John Johnson working in the physics division at 
Bell Labs was researching noise in electronic circuits. He discovered that there was an 
irreducible low level of noise in resistors whose power was proportional to temperature.   
Harry Nyquist, a theorist in that division, got interested in the phenomenon and developed 
an elegant explanation based on fundamental physics.   

THEORY OF THERMAL JOHNSON NOISE 

 Thermal agitation of electrons in a resistor gives rise to random fluctuations in the 
voltage across its terminals, known as Johnson noise. In Problem 1, you are to show that in 
a narrow band of frequencies, fΔ , the contribution to the mean-squared noise voltage from 
this thermal agitation is,  
 
 2( ) 4 Btime

V t Rk T f= Δ  (1) 

 
where R  is the resistance in ohms and T  is the temperature in degrees Kelvin for the 
resistor,  is the Boltzmann constant (Bk 231 38 10−. ×  J/K).  
 
 This voltage is usually too small to be detected without amplification. If the resistor 
is connected across the input of a high-gain amplifier whose voltage gain as a function of 
frequency is , the mean square of the voltage output of the amplifier will be:  ( )G f
 

 2 2

0
( ) 4 [ ( )] ( )Btime time

V t Rk T G f df V t
∞

= +∫ 2
N  (2) 

 
where 2( )N time

V t  is the output noise generated by the amplifier itself.  
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 Thus by measuring 2( )
time

V t  as a function of R  and making a plot, one obtains 

 from the slope, while the abscissa gives 2

0
4 [ ( )]Bk T G f df

∞

∫ 2( )N time
V t .   But the amplifier 

gain  can be independently measured and the gain integral  evaluated. 

The slope will then give a value for the Boltzmann constant . 

( )G f 2

0
[ ( )]G f df

∞

∫
Bk

 
 This is in outline the first part of the experiment. The second part involves 
measuring the noise voltage as a function of the temperature, to verify the expected 
temperature dependence.  

Problem 1 - Derivation of Eq. (1) 

An electrical transmission line connected at one end to a resistor R  and at the other 
end by an "equivalent" resistor R  may be treated as a one- dimensional example of black 
body radiation.   

 

 
   

Figure 1.  Two resistors (of equal resistance R) coupled via a transmission line. 
At finite temperature T , the resistor R  generates a noise voltage  which will 
propagate down the line. If the characteristic impedance of the transmission line is made 
equal to

( )V t

R , the radiation incident on the "equivalent" resistor R  from the first resistor R  
should be completely absorbed.  
 
The permitted standing wave modes in the line have 2L nλ = /  and ( 2 )f c L n= / , where 

 etc., and v  is the wave velocity in the line. The separation of the modes in 
frequency is 

1 2 3n = , , ,
2v L/  and the number of modes between f  and f f+ Δ  is  

 
 ( ) (2 )f f L c fσ Δ = / Δ  (3) 
 
From the Planck distribution or the equipartition theorem, the mean thermal energy 
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contained in each electromagnetic mode or photon state in the transmission line is:  
 

 ( )
1B Bhf k T

hfE f
e /= ≈ k T

−
     at low frequencies. (4) 

 
From Eq. (3) and (4) find the electromagnetic energy ( ) ( )E f f fσ Δ  in a frequency 
interval fΔ . One half of this energy is generated by the first resistor of R  and propagating 
towards the "equivalent" resistor R . Knowing the propagation time from the generating 
resistor to the absorbing resistor t L cΔ = / , show that the absorbed power by the 
"equivalent" resistor R  equals  
 ( ) BP f f k T fΔ = Δ .  (5) 

 
In thermal equilibrium, this power is simply the ohmic heating generated by a noise voltage 
source  from the first resistor. Since  is terminated by the absorbing resistor ( )V t ( )V t R  
and has an "internal" resistance R  (the first resistor), it produces a current (2 )I V R= /  in 
the line. Hence the power absorbed by the "equivalent" resistor R  over the frequency 
interval fΔ  can also be calculated as  
 

 
2 2 2

2 ( )
2 4 4
V V V fI R R
R R R

fΔ⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 (6) 

 
By equating  to ( ) BP f f k T fΔ = Δ

2

V f RΔ / , show that 
 
 2 ( ) 4 BV f f k TR fΔ = Δ  (7) 

and  
 2( ) 4 Btime

V t k TR f= Δ  (8) 

 
This is known as Nyquist’s theorem as shown in Eq. (1).  The power spectral density (noise 
power per unit frequency) is independent of frequency. Most other noise sources in nature 
have a f -1 to f -2 spectrum.  
       Question:  what is the integrated power of this Johnson noise over all frequencies?  
[i.e., why can’t a single resistor supply the world’s energy needs?] 
 
 Eq. (1) is interesting: the left hand side describes random fluctuations of a lossy 
system in thermodynamic equilibrium.  i.e. it is an equilibrium property; both the electrons 
and the lattice are in equilibrium at some temperature T.  However, the right hand side of 
the equation refers explicitly to a non-equilibrium property of the same lossy system: the 
resistance R, which is measured by applying a voltage (taking the system out of 
equilibrium) and measuring the current of electrons scattering through the lossy system.  
Johnson noise is an example of a broader fundamental principle in nature called the 
“fluctuation-dissipation theorem.”  It relates the non-equilibrium dissipation in a 
system to its spontaneous fluctuations in equilibrium.  See accompanying papers by 
Callen. 
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SAMPLE AND APPARATUS
 
 A very low noise operational amplifier is used as the first stage of 
amplification for the Johnson noise.  Roll-off filters limit the bandwidth on the 
low frequency side, while parasitic capacitance shunting the resistors will limit it 
on the high frequency side.  As a result, the bandwidth is approximately 1 kHz.  
The apparatus is connected with shielded coaxial cables as shown to reduce 
pickup. 
 
 The sine wave oscillator is used to measure the gain of the amplifier.  The 
oscillator output is put through an attenuator to reduce it to the level needed to be 
able to insert into the amplifier.  The attenuation factor of the attenuator is 
accurately given by the controls and does not need to be calibrated.  Its output 
should be directly connected to the amplifier EXT input to avoid voltage drops in 
connecting cables.  The frequency f of the oscillator can be accurately set and 
determined with the Integrating Digital Voltmeter.  Check with the Instructor or 
T.A. for how to set it up. 

Signal 
Generator

Frequency
CounterAttenuator

InIn OutOut

HP 350 HP 5315HP 204

UCD Amplifier / Filter

In Out

1 KHz
Oscillator

Out

RMS
Voltmeter

HP 3400

InInClk

Integrating
Digital

Voltmeter

HP 2401

Resistor Box

Out

Resistor Probe

Out
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PROCEDURE FOR MEASURING THE GAIN INTEGRAL   
 

[G(f)]2

0

∞

∫ df  

 
 You obtain 

  
[G  by measuring the amplifier gain  at a discrete 

and evenly spaced set of frequency values (f) and then evaluating the discrete 

sum    numerically. 

(f)]2

0

∞

∫ df  G(f)

[G(f)]2∑ Δf

 
 Let the amplifier warm up for at least half an hour before starting this 
process.  The amplifier is powered by batteries.  If the unit has not been used 
recently, batteries need to be checked.  To measure , set the input switch to 
EXT, connect a precision broadband voltage attenuator to the input of the 
amplifier.  The attenuator is used to assist you in determining the amplifier gain 

 as follows.   

 G(f)

  G(f)
 
 Supply the input of the attenuator with a sinusoidal voltage signal of Vi = 1 
volt at a frequency between zero and 4000 Hz.  For the best accuracy, measure the 
applied voltage signal with either a digital voltmeter or an oscilloscope.  Since at f 
= 1000 Hz,    is roughly 10000, you can set the attenuation parameter G(f)

  N dB ~ 80 dB  that gives a voltage attenuation factor of  GA = 10N dB 20 ~ 10000).  The 
output of the attenuator,   V i G A , is then fed into the input of the amplifier.  You 
measure the amplifier output  V o = V i G A( )G f( ) with the same voltmeter or the 

oscilloscope.  The amplifier gain is given by  
 
   G f( ) = Vo V i( )G A = V o Vi( )10N dB 20  (9) 

 
It is best that you adjust    so that N dB  V o Vi ~ 1.  Repeat the measurement at a 
series of frequencies, to obtain a discrete set of  values.  From these results, 
you can numerically calculate 

 G(f)

 
[G(f)]2

0

∞

∫ df . 
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JOHNSON NOISES FROM RESISTORS AT ROOM TEMPERATURE: 
 
 Disconnect the attenuator from the amplifier.  Connect the resistor box to the 
amplifier and select a R value using the switch on the box.  Use the HP3400A RMS 
Voltmeter to measure the rms voltage of the amplified Johnson noise signal.  
Since the rms voltage fluctuates on the time scale of a fraction of second, it is 
difficult to obtain an accurate reading of the mean of the rms voltage.  To obtain 
the latter, you use an HP240IC Integrating Digital Voltmeter with the following 
procedure. 
 
(1) Connect the DC output at the rear panel of the HP3400A RMS Voltmeter to 

"Hi" and "Lo" on the front panel of HP240IC Integrating Digital Voltmeter; 
(2) On the front  panel, set "Function" to "VOLT"; 
(3) Set "Range " to "10V"; 
(4) Set "SAMPLE PERIOD" to "1 SEC"; 
(5) Send a 1000-Hz sinusoidal signal from a HP20 Oscillator to "External Clock 

Input" at the rear of the Integrating Digital Voltmeter; 
(6) Set the frequency standard (STD) next to "External Clock Input" to "EXT"; 
(7) Wait for 100 seconds before the voltage integration and average is complete.  

The displayed voltage value  is the 100-second average of the DC output 
multiplied by 100.  To convert this value to the rms value of the amplified 
Johnson noise   , you need to divide  by 100 and then multiply the scale 
on the front panel of the HP3400A RMS Voltmeter. 

 V d

Vo  V d

 
 Measure the noise voltage of each of the resistors.  The value of the resistance 
of each of the resistors is written on the amplifier box.   If you wish to check the 
resistance of these resistors, you may by connecting an ohm meter to the resistor 
box connector and measuring the selected R. 
 
 Use Eq. (2) to calculate the Boltzmann constant  k B , taking into account the 
corrections mentioned below.  Also, you should compare the value of the 
amplifier noise,   VN

2
time

, obtained from your data of the noise voltage measured 

at the amplifier output when the input is shorted. 
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TEMPERATURE DEPENDENCE OF THE JOHNSON NOISE
 
 A shielded resistor in a sealed 1

2 -inch diameter stainless steel tube is 
provided to explore the temperature dependence of Johnson noise.   The interior 
of the tube is filled with helium gas for thermal contact between resistor and the 
outside.  Connect this probe directly to the INPUT connector on the amplifier 
(additional cable will only add capacitance and microphonic noise).   
 
 Record the RMS voltage produced by this resistor at room temperature     (~ 
300 K as measured with thermometer), and at liquid nitrogen (77 K) and liquid 
helium (4.2 K).  For low temperature measurements, make sure that the probe is 
filled with helium gas before it is immersed in the containers of liquid nitrogen 
and liquid helium.  The helium gas will not become liquefied, and will help cool 
the resistor to the final temperature by conducting the heat away from it. 
 
 Plot the rms noise voltage as a function of the temperature.  Also, measure 
the resistance of the resistor at each of the temperatures (since the resistance of 
most resistors is a strong function of the temperature). 
 
 If you find any discrepancy between the measurement and the theory, 
suggest what their source(s) might be. 
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MEASURING NOISE SPECTRA WITH A LabVIEW VIRTUAL INSTRUMENT
 
 In this section of the laboratory, you  
(1) learn how to use a computer-aided data acquisition method (LabVIEW  
 virtual instrument) to perform voltage measurement; 
(2) measure thermal Johnson noise power spectra or  V

2 f( )  using a Fast- 
 Fourier-Transform program on LabVIEW and verify that thermal  
 Johnson noise is indeed frequency-independent; 
(3) determine the resistance and temperature dependence of the noise  
 spectra and in turn calculate the Boltzmann constant kB; 
(4) (Optional) use Johnson noise spectra to determine the frequency  
 response of an amplifier gain G(f). 
 
 The LabVIEW program for the thermal Johnson noise is called 
"Johnson_Noise _2002.vi."  It is in the Physics 122 folder on the PC computer by 
the experiment.  It is placed in the "Physics122Lab_folder" on the C Drive.  It is 
ready to be used to measure the noise spectra for the various fixed resistors in the 
amplifier box. 
 
 The  program measures the noise voltage V(t) by digitizing a voltage input 
using an analog-to-digital converter on a data acquisition board inside the 
computer.  The board measures a user-set total number of samples    with a 
user-set sampling rate   .     is equal to twice of the maximum measurable 
frequency fmax.  This is because that one needs to sample at least two time points 
on a sine wave to determine its frequency.  This is known as the Nyquist sampling 
theorem. 

N s

f r f r

 
The program then computes the Fourier transform V(f) of the measured 

voltage V(t) by using a computer algorithm called the Fast Fourier Transform 
(FFT), invented by Cooley and Tukey.  This algorithm is much more efficient if 
the total number of samples  = 2n, with n being an integer.  Using this 
algorithm, the maximum number of data points obtained over the frequency 
range from 0 to fmax is Nf  = /2.  The LabVIEW panel displays the real-time 
signal and the power spectral density V2(f) of each run. 

 N s

 N s
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Note that for each measurement of samples, the power spectral density 
(PSD) is quite noisy.  We improve the signal-to-noise ratio of the measured power 
spectral density by averaging N such spectra.  The signal-to-noise ratio is 
improved by   

 N s

N .  In the LabVIEW panel, the averaged power spectrum V2(f)∆f 
where   Δf = fmax N f = fr N s  is the frequency interval between the data points. 

 
Note that the time-averaged mean squared total noise  V

2 t( )  equals the 

mean squared total noise in frequency space, i.e.,  
 

  
V2 t( ) = V 2 f( )Δf

0

∞

∫ = Vn
2 f( )Δf

n= 1

N f

∑ . (10) 

 

The program calculates the sum  that yields 
 

Vn
2 f( )Δf

n= 1

N f

∑  V
2 t( ) . 

 
Finally, measurements of noise are very important to physics experiments, 

because the actual noise levels in the experiment can determine whether one can 
measure small signal levels in the experiment.  Measurements of noise power 
spectra as described here are frequently performed to understand the sources of 
the noise in the experiment.  If you understand the noise in your experiment, you 
can then work to reduce noise sources by, for example, choosing components 
with less noise, averaging longer to reduce the effects of noise on the signal, or 
working in frequency regions where the noise is lower.  In fact, specialized 
frequency analyzers exist; these are instruments which can easily measure such 
noise spectra, and they work the same way your LabVIEW computer program 
does.  Some modern digital sampling oscilloscopes has a useful FFT option, and 
can be used to explore a wide frequency spectrum.  Not only are there other 
sources of noise, there are also other sources of interference which may introduce 
systematic errors.  For example, the local FM station has a particularly strong 
signal in the lab (you should look for this at ~103MHz and be sure it is not present 
at the low-level parts of your circuit by probing with a scope or spectrum 
analyzer.  Even if your scope does not have a FFT option you can change the time 
base and sensitivity to see this sine wave if it is present.) 
 
 This noise power spectrum measurement by a computer and fast Fourier 
Transform is particularly useful for measuring the noise of the resistor in the 
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separate probe as a function of temperature (room temperature (~300K), in liquid 
nitrogen (77K), and in liquid helium (4.2K).  The noise from this resistor is 
particularly susceptible to microphonic noise.  Microphonic noise is the noise 
voltage generated in electric wires due to their motion through capacitive effect or 
piezo-electric effect.  Thus it can be generated from the probe being shaken, by 
people walking in the room causing vibrations in the probe, etc.  Measuring the 
noise power spectrum allows you to distinguish the Johnson noise (which is not 
frequency dependent) from microphonic noise and line frequency noise that peak 
at specific frequencies such as multiples of 60Hz. 
 
(1) Learning a computer-aided data acquisition with a LabVIEW virtual  
 instrument: 

 Consult with the T.A. or an instructor of the Physics 122 Lab on how the 
LabVIEW works and quickly explain how "Johnson_Noise _2002.vi" operates.  
You should make an effort to familiarize yourself with the concept and strategy of 
a LabVIEW virtual instrument for computer-aided data acquisition. 

 For your experiment, you need to create your own folder to store the data 
files and any LabVIEW programs that you have created or saved in your own 
"name".  You may want to bring a floppy diskette (you can buy them at the 
bookstore) and back up your files onto it, so that if anything should happen to the 
computer or its hard disk, your files will not be lost. 
 
(2) Measure thermal Johnson noise power spectra or  V

2 f( )Δf  using  
 "Johnson noise power spectrum analyzer" and verify that thermal  
 Johnson noise is indeed frequency-independent 
 Question: How does the noise power spectrum  V

2 f( )Δf  compare to  
    the square of the amplifier gain  G

2 f( ) that you measured ? 
 
(3) Determine the resistance and temperature dependence of the noise  
 spectra and in turn calculate the Boltzmann constant kB 
 Question: How does the noise power spectrum  V

2 f( )Δf  (shape and   
    magnitude) vary with the resistance R ? 
 Question: How does the noise power spectrum  V

2 f( )Δf  vary with  
    temperature T ? 
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 Question: Can you think of a way to use the noise power spectrum 
    and the measured gain curve  G

2 f( ) to calculate the  
    Boltzmann constant kB without the AC Voltmeter and  
    the Integrating Voltmeter ? 
 
(4) (Optional) Use Johnson noise spectra to determine the frequency  
 response of an amplifier gain G(f) 
 
 Since the thermal Johnson noise from a resistor is a broad frequency-band 
generator with a constant power spectral density  V

2 f( ) = 4k BTR , one can use the 
amplified thermal Johnson noise to measure the amplifier gain G(f) using a fast 
Fourier transform method with a LabVIEW program.  Consult the instructor or 
T.A. for this option. 
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Apparatus 
 
There are three units built specifically for this experiment. The first box is combination 
amplifier and filter. A very low noise operational amplifier is used as the first stage of 
amplification for the Johnson noise. Three total amplification stages are used for a total 
gain of about 10,000. Active filters are included with the amplifier to cut out the low and 
high frequencies, leaving a pass band covering approximately 100 Hz to 2 Khz. The box is 
a prototype and the filter characteristics are still a little strange. The photo below shows the 
filter characteristics on a network analyzer screen. The filter roll off is fairly sharp on both 
ends, but there is evident peaking at the edges of the pass band. 
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There is a resistor box that attaches to the amplifier input to allow testing for Johnson 
noise on several different values of resistors and a probe with a 1.2 Megohm resistor that 
is used for testing of temperature effects on Johnson noise. When testing resistors for 
Johnson noise, the signal generator, frequency counter and attenuator are not used. 
When checking for amplifier/filter characteristics, the Generator, counter and attenuator 
are connected in place of the resistor box or probe. Amplifier output is read on the HP 
3400 Analog AC Volt Meter. 
 
 
Measuring the Gain Integral 
 
Before taking data for Johnson noise, the characteristics of the Amplifier and Filter must 
be accurately determined. The setup for this is shown in the photo below.  
 

 
 
You can obtain the curve, or waveform, of the Amp/Filter by applying an input sine wave of 
known frequency and amplitude and then measuring the output voltage. Measuring the 
output at many frequencies across the band of interest and plotting the results on a 
frequency vs amplitude graph will provide results such as those on the next page.  
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Volts Hz          
0.108 50          
0.112 60 
0.078 80 
0.167 90 
0.520 100 
0.980 105 
2.000 120 
2.050 130 
2.140 150 
2.380 175 
2.520 200 
2.530 250 
2.530 450 
2.500 520 
2.280 875 
2.340 1100 
2.300 1225 
2.250 1280 
2.200 1320 
2.100 1400 
2.000 1550 
2.100 1667 
2.200 1715 
2.300 1750 
2.400 1775 
2.500 1800 
2.600 1825 
2.700 1850 
2.800 1860 
2.900 1885 
3.000 1925 
3.030 1975 
3.000 2050 
2.900 2120 
2.800 2150 
2.500 2160 
2.000 2185 
1.500 2220 
1.000 2265 
0.750 2300 
0.500 2350 
0.400 2380 
0.300 2425 

 

0.200 2480          
0.100 2600          
0.050 2750          

 
 
If the filter response plot above simply had nice vertical sides and a flat top, then the 
Johnson noise over the bandwidth would be the power spectral density times the 
bandwidth. Any filter response may be represented by an effective bandwidth determined 
by the total area under the filter response curve.  
 
The full bandwidth internal noise can be measured by connecting a short circuit adapter 
(shunt) across the amplifier input and measuring the output voltage.  
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Since our filter response does not look like a nice rectangular box we will have to integrate 
the curve. We can then calculate a correction factor to adjust our measured readings. A 
copy of the plot marked with a handy box to use as our bandwidth is shown below. The top 
line is the amplifier output before filtering. The experiment does not allow access to this 
point right now, but bench testing indicates it should be in the position shown. 
 

 
 
 
The area under this curve is Vin  

[G(f)]2

0

∞

∫ df , where Vin  is the applied sine wave 
amplitude.  The effective bandwidth is simply the width Δfeff  of a rectangular 
passband which has total area  

 
[G(f)]2

0

∞

∫ df . 

i.e. 2
00

[ ( )] / [ ( )]eff
2f G f df G f

∞
Δ = ∫   where f0  is taken at the center of the passband. 
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