1. Three point charges, $\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{Q}$, are separated as shown below. The line connecting q_{1} and q_{2} is perpendicular to the line connecting q_{2} and Q .
(a) (10 points) Find the magnitude and direction of the net electric force on Q . (Hint: choose a convenient coordinate system first).
(b) (10 points) Find the total work done by the electric forces from q_{1} and q_{2} on Q when Q is moved from its present location (A) to infinity.
(c) (10 points) Find the magnitude and direction of the net electric field produced by q_{1} and Q at q_{2}.

2. A thin, insulating, spherical shell with radius R is uniformly charged with Q. Another thin, insulating, spherical shell with smaller radius $\mathrm{R} / 2$ is uniformly charged with - Q. The centers of the shells are separated by 2R.
(a) (10 points) Find the total electric field at point A , (half way between O and the surface of the larger shell) and at point B (just outside the larger shell.)
(b) (10 points) Find the electric potential at point B relative to infinity.
(c) (10 points) Find the electric potential at point P relative to infinity.

3. A solid conducting sphere of radius a carries a positive charge Q. It is enclosed by a thick conducting shell with inner radius $b(b>a)$ and outer radius c that carries no net charge. A second thick conducting shell with inner radius $d(d>c)$ and outer radius f encloses the first conducting shell and carries a net charge -Q.
(a) (10 points) Find the charge on each of the five surfaces.
(b) (10 points) Find the difference between the potential of the solid conducting sphere and the potential of the first (smaller) conducting shell.
(c) (10 points) Find the difference between the potential of the first conducting shell and potential of the second (larger) conducting shell.
(d) (10 points) Find the electric field outside the second conducting shell.

(Useful constant: $k=1 / 4 \pi \varepsilon_{0}=8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$).
