1. In the following circuit, $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}_{4}=8 \mu \mathrm{~F}$, and $\mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}=20 \mathrm{~V}$.
(a) (8 points) Find the equivalent capacitance between a and b;
(b) (8 points) Find the charge on each capacitor;
(c) (4 points) Find the potential difference across each capacitor.

2. A slab of dielectric material with $\kappa=\sigma$, thickness a and area $(2 / 3) A$ is inserted between the plates of an air parallel-plate capacitor with plate area A and plate separation d. Here $d \geq a$.
(a) (10 points) Find the capacitance C of the capacitor in this arrangement in terms of the capacitance C_{0} when the dielectric slab is removed;
(b) (5 points) Find the capacitance C in terms of C_{0} when $a=0$;
(c) (5 points) Find the capacitance C in terms of C_{0} when $a=d$.

3. In the following direct-current circuit, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=6 \Omega$, and $\varepsilon=72 \mathrm{~V}$ with negligible internal resistance.
(a) (10 points) find the power dissipated in R_{1} and R_{2};
(b) (10 points) Now remove R_{4} from the circuit, and find the current through each of the remaining three resistors.

4. In the following direct-current circuit,
(a) (8 points) Find the magnitude and direction of the current in the circuit;
(b) (6 points) Find the terminal voltage of the 4 V battery, $\mathrm{V}_{\mathrm{bc}}=\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{c}}$;
(c) (6 points) Find the potential difference $V_{a d}=V_{a}-V_{d}$.

5. In the following direct-current circuit,
(a) (10 points) Find the current (direction and magnitude) in each branch;
(b) (10 points) Find the potential difference $V_{a b}=V_{a}-V_{b}$.

