Electric force \mathbf{F}_{E}	Electrostatic field $\mathrm{E}=\frac{\mathbf{F}_{\mathrm{E}}}{\mathrm{q}_{0}}$	Electric potential energy $\left(\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}\right)_{\mathrm{q}_{0}} \equiv-\mathrm{q}_{0} \int_{\mathrm{i}}^{\mathrm{f}} \mathrm{E}_{\text {static }} \cdot \mathbf{d l}$	Electric potential $\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}} \equiv \frac{\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}}{\mathrm{q}_{0}}=-\int_{\mathrm{i}}^{\mathrm{f}} \mathrm{E}_{\text {static }} \cdot \mathbf{d l}$
$\mathbf{F}_{12}=\mathrm{k} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}_{12}^{2}} \hat{\mathbf{r}}_{12}$	$\mathbf{E}_{12}=\frac{\mathbf{F}_{12}}{\mathrm{q}_{2}}=\mathrm{k} \frac{\mathrm{q}_{1}}{\mathrm{r}_{12}^{2}} \hat{\mathbf{r}}_{12}$	$\mathrm{U}_{2}\left(\mathbf{r}_{2}\right)-\mathrm{U}_{2}(\infty)=\frac{\mathrm{kq}_{2} \mathrm{q}_{1}}{\left\|\mathbf{r}_{2}-\mathbf{r}_{1}\right\|}$	$\mathrm{V}\left(\mathbf{r}_{2}\right)-\mathrm{V}(\infty)=\frac{\mathrm{kq}_{1}}{\left\|\mathbf{r}_{2}-\mathbf{r}_{1}\right\|}$
$\mathbf{F}_{0}=\sum_{\mathrm{n}=1} \mathrm{k} \frac{\mathrm{q}_{\mathrm{n}} \mathrm{q}_{0}}{\mathrm{r}_{\mathrm{n} 0}^{2}} \hat{\mathbf{r}}_{\mathrm{n} 0}$	$\mathbf{E}_{0}=\sum_{\mathrm{n}=1} \mathrm{k} \frac{\mathrm{q}_{\mathrm{n}}}{\mathrm{r}_{\mathrm{n} 0}^{2}} \hat{\mathbf{r}}_{\mathrm{n} 0}$	$\mathrm{U}_{0}\left(\mathbf{r}_{0}\right)-\mathrm{U}_{0}(\infty)=\mathrm{q}_{0} \sum_{\mathrm{n}=1} \frac{\mathrm{kq}_{\mathrm{n}}}{\left\|\mathbf{r}_{0}-\mathbf{r}_{\mathrm{n}}\right\|}$	$\mathrm{V}\left(\mathbf{r}_{0}\right)-\mathrm{V}(\infty)=\sum_{\mathrm{n}=1} \frac{\mathrm{kq}_{\mathrm{n}}}{\left\|\mathbf{r}_{0}-\mathbf{r}_{\mathrm{n}}\right\|}$
$\mathbf{F}_{0}=\mathrm{q}_{0} \mathbf{E}_{0}$ Cathod-Ray Tube Force on eletric dipole \boldsymbol{p} Torque on electric dipole p : $\tau=p \times E$	Line segments Ring (full and broken) Disc and thick ringss Electric dipole p Combination of them: $\mathbf{E}=\mathrm{E}_{1}+\mathrm{E}_{2}+\mathrm{E}_{3}+\cdots$	$\mathrm{U}_{0}\left(\mathrm{r}_{0}\right)=\mathrm{q}_{0} \mathrm{~V}\left(\mathrm{r}_{0}\right)$	Line segments Ring (full and broken) Disc and thick ringss Electric dipole \boldsymbol{p} Combination of them: $\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}+\cdots$
	Gauss' law $\oiint_{S} \mathbf{E} \cdot \mathbf{d A}=\frac{\mathrm{Q}_{\text {inside }}}{\varepsilon_{0}}$ Cylinders/lines/shells Spheres/spherical shells Flat sheets Combination of them: $\mathbf{E}=\mathbf{E}_{1}+\mathbf{E}_{2}+\mathbf{E}_{3}+\cdots$		$\begin{gathered} V_{f}-V_{i}=-\int_{i}^{f} E_{\text {static }} \cdot d \mathbf{l} \\ E(\mathbf{r})=-\nabla V \end{gathered}$ Cylinders/lines/shells Spheres/spherical shells Flat sheets Combinations of them: $\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}+\cdots$

Capacitors (C)	Current (I) and Resistors (R)	Electro-motive force (emf)	DC circuits ($\mathrm{R}, \mathrm{C}, \mathrm{L}, \mathrm{\varepsilon}$)

