Electric force F _E	Electrostatic field $\mathbf{E} = \frac{\mathbf{F}_{\rm E}}{\mathbf{q}_{\rm 0}}$	Electric potential energy $(U_f - U_i)_{q_0} - q_0 \int_i^f E_{static} dl$	Electric potential $V_f - V_i = \frac{U_f - U_i}{q_0} = -\int_i^f E_{static} dl$
$\mathbf{F}_{12} = \mathbf{k} \frac{\mathbf{q}_1 \mathbf{q}_2}{\mathbf{r}_{12}^2} \hat{\mathbf{r}}_{12}$	$\mathbf{E}_{12} = \frac{\mathbf{F}_{12}}{\mathbf{q}_2} = \mathbf{k} \frac{\mathbf{q}_1}{\mathbf{r}_{12}^2} \hat{\mathbf{r}}_{12}$	$\mathbf{U}_{2}(\mathbf{r}_{2}) - \mathbf{U}_{2}(\mathbf{r}_{2}) = \frac{\mathbf{k}\mathbf{q}_{2}\mathbf{q}_{1}}{ \mathbf{r}_{2} - \mathbf{r}_{1} }$	$V(\mathbf{r}_{2}) - V(\) = \frac{\mathbf{kq}_{1}}{ \mathbf{r}_{2} - \mathbf{r}_{1} }$ $V(\mathbf{r}_{0}) - V(\) = \frac{\mathbf{kq}_{n}}{ \mathbf{r}_{1} - \mathbf{r}_{1} }$
$\mathbf{F}_{0} = \frac{\mathbf{k} \frac{\mathbf{q}_{n} \mathbf{q}_{0}}{\mathbf{r}_{n0}^{2}} \hat{\mathbf{r}}_{n0}}{\mathbf{r}_{n0}}$	$\mathbf{E}_{0} = \prod_{n=1}^{n} \mathbf{k} \frac{\mathbf{q}_{n}}{\mathbf{r}_{n0}^{2}} \hat{\mathbf{r}}_{n0}$	$\mathbf{U}_{0}(\mathbf{r}_{0}) - \mathbf{U}_{0}(\mathbf{r}) = \mathbf{q}_{0} \frac{\mathbf{k}\mathbf{q}_{n}}{ \mathbf{r}_{0} - \mathbf{r}_{n} }$	$\mathbf{V}(\mathbf{r}_0) - \mathbf{V}(\) = \frac{\mathbf{kq}_n}{ \mathbf{r}_0 - \mathbf{r}_n }$
$F_0 = q_0 E_0$ Cathod-Ray Tube Force on eletric dipole p Torque on electric dipole p: $= p \times E$	Line segments Ring (full and broken) Disc and thick ringss Electric dipole \mathbf{p} Combination of them: $\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2 + \mathbf{E}_3 +$	$\mathbf{U}_{0}(\mathbf{r}_{0}) = \mathbf{q}_{0}\mathbf{V}(\mathbf{r}_{0})$	Line segments Ring (full and broken) Disc and thick ringss Electric dipole \mathbf{p} Combination of them: $\mathbf{V} = \mathbf{V}_1 + \mathbf{V}_2 + \mathbf{V}_3 +$
	Gauss' law $\bigcirc_{\mathbf{E}} \mathbf{dA} = \frac{\mathbf{Q}_{\text{inside}}}{0}$ Cylinders/lines/shells Spheres/spherical shells Flat sheets Combination of them: $\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2 + \mathbf{E}_3 + 0$		$V_{f} - V_{i} = - \int_{i}^{f} E_{static} dl$ $E(r) = - V$ $Cylinders/lines/shells$ $Spheres/spherical shells$ $Flat sheets$ $Combinations of them:$ $V = V_{1} + V_{2} + V_{3} + V_{3}$

Capacitors (C)	Current (I) and Resistors (R)	Electro-motive force (emf)	DC circuits (R, C, L,)
$\mathbf{C} = \frac{\mathbf{Q}}{\mathbf{V}}$ Parallel-plates Conducting sphere Conducting spherical shells Coaxial cylindrical rod and shells	$I = \frac{Q}{t}$ Ohm's law: I = V/R Power dissipation: $P = dU/dt = IV = V^{2}/R = I^{2}R$	emf : force K other than the electrostatic on unit positive charge $= \circ \mathbf{K} \ \mathbf{dl}$ C A battery with $r_i = 0$, $\mathbf{V} = -$	Kirchhoff rules: 1. $\circ \mathbf{E}_{\text{static}} d\mathbf{l} = 0$ 2. $\mathbf{I}^{(\text{in})} = \mathbf{I}^{(\text{out})}$ 3. $\mathbf{V}_{\text{R}} = \mathbf{I}\mathbf{R} = \mathbf{R}d\mathbf{Q}/dt$ $\mathbf{V} = -$ $\mathbf{V}_{\text{c}} = \mathbf{Q}/\mathbf{C}$ $\mathbf{V}_{\text{L}} = \mathbf{L}d\mathbf{I}/dt$
Capacitor in series: $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} +$ Capacitor in parallel: $C = C_1 + C_2 + C_3 +$ Capacitor with dielectrics (): $E = \frac{E_0}{C} = C_0$ Combinations of them	Resistance R: R = $\frac{L}{A}$ Resistors in series: R = R ₁ + R ₂ + R ₃ + Resistors in parallel: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} +$ Combinations of them	Chemical (battery) Magnetic induction Motion emf: m = Bℓv (power generator) Back emf: m = LdI/dt (LRC circcuits) Mutual induction emf : (transformer)	Resistor network Resistor-emf circuit RC circuits: charging discharging _{RC} = RC LR circuits: "charging" "discharging" _{LR} = L/R LRC circuits
Electrostatic energy density: $_{e} = \frac{-0}{2} E^{2}$			Magnetic energy density: $_{m} = \frac{1}{2\mu_{0}} B^{2}$