Magnetic force \mathbf{F}_{m}	Magnetic field $\mathbf{B} \sim \mathbf{F}_{\mathrm{m}} / \mathrm{q} \mathbf{v}$	Magnetic induction (Faraday	Electric induction (Biot-Savart-Maxwell
$\begin{aligned} \mathbf{F}_{12} & =\left(\frac{\mu_{0}}{4 \pi}\right) \frac{\mathrm{q}_{2} \mathbf{v}_{2} \times\left(\mathrm{q}_{1} \mathbf{v}_{1} \times \hat{\mathbf{r}}_{12}\right)}{\mathrm{r}_{12}^{2}} \\ & =\mathrm{q}_{2} \mathbf{v}_{2} \times \mathbf{B}\left(\mathbf{r}_{2}\right) \end{aligned}$	$\mathbf{B}\left(\mathbf{r}_{2}\right)=\left(\frac{\mu_{0}}{4 \pi}\right) \frac{\mathrm{q}_{1} \mathbf{v}_{1} \times \hat{\mathbf{r}}_{12}}{\mathrm{r}_{12}^{2}}$	Faraday-Lenz's law: $\varepsilon_{\mathrm{m}}=\oint_{\mathrm{c}} \mathbf{E} \cdot \mathbf{d} \mathbf{l}=-\frac{\mathrm{d}}{\mathrm{dt}} \iint_{\mathrm{S}_{\mathrm{c}}} \mathbf{B} \cdot \mathbf{d} \mathbf{A}$	Ampere-Maxwell $\oint_{c} \mathbf{B} \cdot \mathbf{d l}=\mu_{0} I_{c}+\mu_{0} \varepsilon_{0} \frac{d}{d t} \iint_{S_{c}} \mathbf{E} \cdot \mathbf{d} \mathbf{A}$
$\begin{aligned} \mathrm{d} \mathbf{F}_{12} & =\mathrm{I}_{2} \mathbf{d l}_{2} \times\left(\frac{\mu_{0}}{4 \pi}\right) \frac{\mathrm{I}_{1} \mathbf{d l}_{1} \times \hat{\mathbf{r}}_{12}}{\left\|\mathbf{r}_{12}\right\|^{2}} \\ & =\mathrm{I}_{2} \mathbf{d l}_{2} \times \mathrm{dB}\left(\mathbf{r}_{2}\right) \end{aligned}$	$\mathrm{dB}\left(\mathbf{r}_{2}\right)=\left(\frac{\mu_{0}}{4 \pi}\right) \frac{\mathrm{I}_{1} \mathrm{dl}_{1} \times \hat{\mathbf{r}}_{12}}{\mathrm{r}_{12}^{2}}$		Wave equation: $\begin{aligned} \nabla^{2} \mathbf{E} & =\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} \\ c & =\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}} \end{aligned}$
$\begin{gathered} \mathbf{F}_{\mathrm{m}}=\mathrm{q} \mathbf{v} \times \mathbf{B} \\ \text { or } \\ \mathrm{d}_{\mathrm{m}}=\mathrm{Id} \mathbf{d} \times \mathbf{B} \\ \text { Cyclotron: } \mathrm{mv}^{2} / \mathrm{r}_{\mathrm{c}}=\mathrm{qvB} \\ \text { Velocity selection: } \mathrm{v}=\mathrm{E} / \mathrm{B} \\ \text { Hall effect: } \mathbf{E}_{\mathrm{H}}=-\mathbf{v}_{\mathrm{d}} \times \mathbf{B} \\ \text { Motion emf: } \varepsilon_{\mathrm{m}}=\mathrm{B} \ell \mathrm{v} \\ \text { Magnetic dipole: } \mathbf{m}=\mathrm{IA} \hat{\mathbf{n}} \\ \text { Torque on } \mathbf{m}: \tau=\mathbf{m} \times \mathbf{B} \end{gathered}$	$\mathbf{B}\left(\mathbf{r}_{2}\right)=\oint_{\mathrm{c}}\left(\frac{\mu_{0}}{4 \pi}\right) \frac{\mathrm{I}_{1} \mathbf{d l}_{1} \times \hat{\mathbf{r}}_{12}}{\mathrm{r}_{12}^{2}}$ Straight segment Circular loop (full and broken) Solenoid: $\mathbf{B}=\mu_{\mathrm{o}} \mathrm{nI}$ Combinations of them $\mathbf{B}=\mathbf{B}_{1}+\mathbf{B}_{2}+\mathbf{B}_{3}+\cdots$	Motion emf: $\varepsilon_{\mathrm{m}}=\mathrm{B} \ell v$ Flip coil Eddy current sliding rods on rails Back emf: $\varepsilon_{m}=\mathrm{L} \frac{\mathrm{dI}}{\mathrm{dt}}$ Solenoid: $\mathrm{L}=\mu_{0} \mathrm{n}^{2} \mathrm{~A} \ell$ LR circuits: $\varepsilon_{\mathrm{m}}=\mathrm{L} \frac{\mathrm{dI}}{\mathrm{dt}}$	Poynting Vector of an EM wave: (intensity) $\mathbf{S}=\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}$
	$\begin{gathered} \text { Ampere's law } \\ \oint_{c} \mathbf{B} \cdot \mathbf{d l}=\mu_{0} \mathrm{I}_{\mathrm{c}}+\mu_{0} \varepsilon_{0} \frac{\mathrm{~d}}{\mathrm{dt}} \iint_{\mathrm{S}_{\mathrm{c}}} \mathbf{E} \cdot \mathbf{d A} \end{gathered}$		

