Magnetic force F _m	Magnetic field $\mathbf{B} \sim \mathbf{F}_{m}/q\mathbf{v}$	Magnetic induction (Faraday	Electric induction (Biot-Savart-Maxwell
$\mathbf{F}_{12} = \frac{\mu_0}{4} \frac{\mathbf{q}_2 \mathbf{v}_2 \times (\mathbf{q}_1 \mathbf{v}_1 \times \hat{\mathbf{r}}_{12})}{\mathbf{r}_{12}^2}$ $= \mathbf{q}_2 \mathbf{v}_2 \times \mathbf{B}(\mathbf{r}_2)$	$\mathbf{B}(\mathbf{r}_{2}) = \frac{\mu_{0}}{4} \frac{\mathbf{q}_{1}\mathbf{v}_{1} \times \hat{\mathbf{r}}_{12}}{\mathbf{r}_{12}^{2}}$	Faraday-Lenz's law: $m = \mathop{\circ} \mathbf{E}_{c} \mathbf{dl} = -\frac{\mathbf{d}}{\mathbf{dt}} \mathbf{B}_{s_{c}} \mathbf{B} \mathbf{dA}$	Ampere-Maxwell • B $d\mathbf{l} = \mu_0 \mathbf{I}_c + \mu_0 \ _0 \frac{d}{dt} \sum_{\mathbf{S}_c} \mathbf{E} \mathbf{dA}$
$\mathbf{dF}_{12} = \mathbf{I}_{2}\mathbf{dI}_{2} \times \frac{\mu_{0}}{4} \frac{\mathbf{I}_{1}\mathbf{dI}_{1} \times \hat{\mathbf{r}}_{12}}{ \mathbf{r}_{12} ^{2}}$ $= \mathbf{I}_{2}\mathbf{dI}_{2} \times \mathbf{dB}(\mathbf{r}_{2})$	$\mathbf{dB}(\mathbf{r}_2) = \frac{\mu_0}{4} \frac{\mathbf{I}_1 \mathbf{dI}_1 \times \hat{\mathbf{r}}_{12}}{\mathbf{r}_{12}^2}$		Wave equation: ${}^{2}\mathbf{E} = \frac{1}{c^{2}} \frac{{}^{2}\mathbf{E}}{t^{2}}$ $c = \frac{1}{\sqrt{{}_{0}\mu_{0}}}$
$\mathbf{F}_{m} = \mathbf{q}\mathbf{v} \times \mathbf{B}$ or $\mathbf{d}\mathbf{F}_{m} = \mathbf{I}\mathbf{d}\mathbf{I} \times \mathbf{B}$ Cyclotron: $\mathbf{m}\mathbf{v}^{2}/\mathbf{r}_{c} = \mathbf{q}\mathbf{v}\mathbf{B}$ Velocity selection: $\mathbf{v} = \mathbf{E}/\mathbf{B}$ Hall effect: $\mathbf{E}_{H} = -\mathbf{v}_{d} \times \mathbf{B}$ Motion emf: $_{m} = \mathbf{B}\ell\mathbf{v}$ Magnetic dipole: $\mathbf{m} = \mathbf{I}\mathbf{A}\mathbf{\hat{n}}$ Torque on \mathbf{m} : $=\mathbf{m} \times \mathbf{B}$	$\mathbf{B}(\mathbf{r}_{2}) = \underset{c}{\circ} \frac{\mu_{0}}{4} \frac{\mathbf{I}_{1} \mathbf{d} \mathbf{I}_{1} \times \hat{\mathbf{r}}_{12}}{\mathbf{r}_{12}^{2}}$ Straight segment Circular loop (full and broken) Solenoid: $\mathbf{B} = \mu_{o} \mathbf{n} \mathbf{I}$ Combinations of them $\mathbf{B} = \mathbf{B}_{1} + \mathbf{B}_{2} + \mathbf{B}_{3} + \mathbf{B}_{3}$	Motion emf: $_{m} = B\ell v$ Flip coil Eddy current sliding rods on rails Back emf: $_{m} = L\frac{dI}{dt}$ Solenoid: $L = \mu_{0}n^{2}A\ell$ LR circuits: $_{m} = L\frac{dI}{dt}$	Poynting Vector of an EM wave: (intensity) $S = \frac{1}{\mu_0} E \times B$
	Ampere's law • B $\mathbf{dl} = \mu_0 \mathbf{I}_c + \mu_0 \cdot 0 \frac{\mathbf{d}}{\mathbf{dt}}_{\mathbf{S}_c} \mathbf{E} \mathbf{dA}$		