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Multipolar contributions to coherent optical second-harmonic generation
at an interface between two isotropic media: A quantum-electrodynamical calculation
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Using a molecular-quantum-electrodynamics method, we calculate the optical second-harmonic gen-
eration at the interface of two isotropic media caused by the multipolar contribution from the bulk. The
most significant part of the radiation in both reflection and transmission is coherent, and the magnitude
is generally comparable to that due to a monolayer of noncentrosymmetric molecules. This supports the
previous treatments that started directly from Maxwell equations and a macroscopic-polarization-field

formalism.

I. INTRODUCTION

In recent years, optical second-harmonic generation
(SHG) at the interface of two media has been increasingly
used as a probe to various properties of the interface lay-
er. They include, not exhaustively, structural sym-
metries, the orientational order of adsorbed species, inter-
face states, and molecular dynamics such as adsorption,
desorption, and even transport along surfaces.! ~® Opti-
cal SHG is most effective when the two bulk media have
either a center(s) of inversion or an isotropic order over a
volume linearly small compared with the involved optical
wavelengths. In these cases, no coherent optical SHG is
generated from the bulk when the electric dipole approxi-
mation is made in both the electric current density and
the interaction Hamiltonian.!”* At the same time, be-
cause the inversion symmetry and the isotropic order are
necessarily lifted in the interface layer, a coherent and
electric dipole-allowed second-harmonic radiation can be
generated from such a layer.! 3

In practice, it is known that the nonlinear polarization
or electric current due to higher-order multipolar Hamil-
tonian, and the multipolar electric current terms within a
layer of a coherence length ( ~the optical wavelength A)
in the bulk can yield a coherent SHG in both reflection
and transmission directions.! ”>3712 In fact, in the direc-
tion of transmission, the coherence length can be much
longer."* Such a bulk contribution has been shown to be
generally comparable to the interfacial electric dipole-
allowed SHG. Consequently, in order to extract informa-
tion about the interface layer from SHG, one needs
sufficient knowledge of the bulk multipolar contribution.
This has prompted rather extensive treatments of the
bulk multipolar terms by numerous authors, more com-
pletely by Guyot-Sionnest and Shen.>> ™12

Since most calculations of SHG start, rather than from
quantum electrodynamics, directly from Maxwell equa-
tions involving the macroscopic polarization fields or the
macroscopic electric current density, the question has
been raised by some authors, based upon molecular elec-
trodynamics consideration, as to whether the bulk elec-
tric quadrupole and magnetic dipole contributions to the
SHG at the interface of two isotropic fluids would indeed
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be coherent and comparable to the overall SHG radia-
tion.!*!> This issue, which has been debated recent-
ly,"* Y is in part due to the lack of a calculation based
upon quantum electrodynamics, which explicitly yields
the same results as obtained in the previous calculations
using the macroscopic polarization fields and Maxwell
equations. A calculation of this type will help to justify
the previous macroscopic treatments of isotropic fluids.

In this paper, we present the result of such a calcula-
tion. Specifically, we carry out a molecular-quantum-
electrodynamical calculation of the multipolar second-
harmonic generation in two adjoining isotropic media.
By appropriately performing a rotational average and an
integration over a half-space, we show that in the pres-
ence of the interface, the optical second-harmonic gen-
eration due to the electric quadrupole response of an iso-
tropic bulk fluid is mostly coherent and generally compa-
rable to the nominal surface or interfacial SHG. This re-
sult thus agrees with the previous macroscopic calcula-
tions.> 10

II. THE MULTIPOLAR SECOND-HARMONIC
GENERATION FROM ISOTROPIC FLUIDS

For simplicity, the physical system under investigation
is an interface adjoining an isotropic molecular fluid a
and another isotropic medium b, with b having vanishing
electric quadrupole and magnetic dipole moments so that
only the multipolar response of the molecular fluid a has
to be considered. An example is an interface of the air
and a molecular liquid. We assume that the linear dielec-
tric constants for the two media are the same,
€40 =€, p =€, SO that the macroscopic local-field factor
can be neglected.? Let a coherent plane-wave optical field
E(r,0,t)=E(w)exp(ik, r—iwt) incident from the medi-
um b. The beam cross section A is assumed much larger
than A’=(2wc /w)?, so that E(w) is considered infinitely
extended. The z axis is along the normal of the interface,
pointing into the molecular fluid a. We choose k,, in the
x-z plane. The interfacial layer is defined as the molecu-
lar fluid layer in which the isotropic order is no longer
preserved. We assume that such a layer is thin compared
to A. Beyond such a layer, we assume that the isotropic
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order is restored in any macroscopic volume element
linearly small compared with A.

Based upon the molecular-quantum-electrodynamics
calculation, it has been established that there is no
coherent second-harmonic generation from both isotro-
pic media in the electric dipole approximation.>* We
thus consider only the second-harmonic generation due
to multipolar contributions, specifically from the electric
quadrupole response of the molecular fluid a.

According to Adler,'? both the spatial Fourier trans-
form of the electric current density J(k,?) and the in-
teraction Hamiltonian H; , for a molecular fluid and radi-
ation fields can be partitioned into an electric dipole, an
electric quadrupole, and a magnetic dipole term,

J(k,t)=7, [ Op; /3t +ik-0Q; /3t
J

—ickXm; Jexp(ik-r;) , (1

Hy,=—73 {p;Ele,) —ik, -Q;Elw,)
jha

+(c /w,)[k, XE(o,)]'m,]

Xexplik, T;—iogt) . (2)
The summation (j) is over the fluid molecules in the radi-
ation field E(w,). The summation (a) is over all radia-
tion fields E(w,), including the fundamental incident field
and the second-harmonic field. p;, Q;, and m; are the
electric dipole, electric quadrupole, and magnetic dipole
operators for the jth molecule, respectively. r; labels its
center of mass. The optical second harmonics generated
from the electric quadrupole and magnetic dipole
responses comes from four combinations of interaction
terms [Eq. (2)] and the electric current terms [Eq. (1)].!?
Instead of calculating all the terms up to the electric
quadrupole and magnetic dipole approximation, we focus
on one of the electric quadrupole terms: the electric di-
pole radiation (corresponding to dp/d¢) at second har-
monics due to the second-order perturbation involving
one electric dipole interaction and one electric quadru-
pole interaction term in Eq. (2). The other combinations
can be treated accordingly.

In the quantum-electrodynamics formalism, instead of
considering the radiation fields and the molecular system
separately, and thus calculating the radiation fields from
the expectation value of the electric current density or
the macroscopic nonlinear polarization, quantized radia-
tion fields at both the fundamental frequency o and the
second harmonics 2 are treated as parts of one
quantum-mechanical system which includes all the mole-
cules in the radiation fields.* Under the perturbation of
H,,, the system undergoes the transition characterized
by ‘““annihilating two fundamental photons” and ‘creat-
ing one second-harmonic photon” while leaving the
molecular part of the system unchanged. Thus, for the
second-harmonic generation through an electric quadru-
pole process, we may consider annihilating two funda-
mental photons by actions of an electric dipole interac-
tion and an electric quadrupole interaction term, and
creating a second-harmonic photon through an electric
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dipole term. The differential rate of the second-harmonic
generation is then calculated by use of the Fermi golden
rule,*

r(20)=2T M, (20)dp(20) . 3)

Here, the radiation density of state dp(2w) into a
differential solid angle dQ is

22w /cV
(27)3#¢

V is the irradiated volume of the molecular fluid. The
matrix element M (2w) is calculated through a third-
order perturbation,*

dpQe)= (4)

M;(20)=3 M ;(20)
J
172
4mhw | 8mhw
=7€w_ Ve, Vi(ny,+)n,(n,—1)

Xka quw rew s€ao,t
XEB‘ re€xpli(2k,—ky, ) r;], (5)

uv , vg

(0} ot 4
(E,q —2fi0)(E,; —fiw)

=2
u,v

p_] SQ] qrp} t
(E,g +#i0)(E,, —fiw)

pj,s j“;)Q ,qr
(E,, tHo)E,, +2%io)

(6)

n, is the initial photon number at the fundamental fre-
quency o and the incident wave vector k. n,,, is the ini-
tial photon number at the second-harmonic frequency 2w
with the wave vector k,,, and is taken to be zero. The
three terms in Eq. (6) correspond to three different time
orders with which the two fundamental photon are “an-
nihilated” and the second-harmonic photon is “created.”
The radiated second-harmonic power is hence

S(2a>)=2ﬁa)fm:4 4T (20) . (7)

ITII. ROTATIONAL AVERAGE OF M/, (20)
FOR ISOTROPIC FLUIDS

Since the spacing between neighboring molecules in the
molecular fluid is much smaller than the wavelength A,
we may perform a full rotational average of |[M f,-(2co)|2 in
a volume element AV, which contains a large number of
molecules and yet small compared with A3. Effectively,
such an average can be taken to be mdependent of r;.
According to Craig and Thirunamachandran,*

IM;(20)>=(|M,(20)|*)

=< ’.(2w)\2>

Uit




2542

The first term gives the usual incoherent radiation term,
which is proportional to the total number N of the irradi-
ated molecules.*!* We concentrate on the second term,
which usually yields the coherent second-harmonic radia-
tion into a well-defined direction. We show that in the
presence of the interface, even though the magnitude of
the second term from an isotropic bulk fluid is reduced
from N? after the rotational average and an integration
over 1, it still yields a coherent radiation comparable to
a nominal surface second-harmonic generation.

We first proceed with the full rotation average in Eq.
(8). The quantity of interest is* !4

16mg P12 fiww
2 (Mfl,j>(M;!,j'>_ € € !
J#j' 20%0

={(n,(n,—1))/{(n,)?) is the second-order correla-
tion function.* I, is the intensity of the fundamental ra-
diation field.

IV. INTEGRATION OVER A HALF-SPACE
WITH + 0 >z>0

If there is no interface, so that we consider a medium
uniformly extended in all directions, the summation in
Eq. (11) can be written into the products of three in-
tegrals from — o to + . This yields 8(2k,—k,,). To-
gether with Eq. (10), the total coherent radiation vanishes
since k -e,=0. This has been observed by Andrews and
Blake.!> When there is an interface, the integration along
the x and y axes still yields 82k, ,—k,, ,)8(2k, ,
—K,,,,)- The integration along the z axis, however, has
to be treated with care as z; now only varies from 0O to

j
+ . We use the following identity (see Appendix B):

f0+ “dz expli(2k,, , —k,, ,)z]

i

:-_1T8(2kw,z —Zk——t;;_ .
©,z w,z

—kap, )+ (12)

The second term has been omitted in previous molecular
electrodynamical calculations.'*!> The first term in Eq.
(12) again leads to a vanishingly small coherent second-
harmonic signal as pointed out by Andrews and
Blake.!*!> We emphasize at this point that it is the
second term which gives rise to a coherent, nonzero con-
tribution from the bulk molecular fluid to the nominal in-
terface SHG. We note that k,, is independently restrict-
ed by Maxwell equations, or specifically, (k,,kj,)
=¢,,(2w/c)®>. When two components of k,, are deter-
mined, the third component is also determined up to a
plus (transmission direction) or a minus sign (reflection
direction). We arrive at

%4 |<qust)k2w quw,r ®,$ a)t
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(qust ) = <B(qrsr ) I(r:t aﬁxSBaﬁ)(S . (&)

Here B,g,s’s are defined in the molecular frame. After a
full rotational average (see Appendix A),

<qust >k2m,q82w,rea),sem,t

=1—15(_Baa)()(+3BaBaB)(k2a;'ew)(e2w'ew) . (10)

Here, the summation convention over repeated sub-
indices is assumed. We have used the fact that Q; .4 is
symmetric with respect to the exchange of a and f3, and
(k,, €5,)=0. We arrive at

2 exp[i

—ky,)T -]12. (11)

Q —_— . . 2
f(n=4n)d o kao) ;] ’
2
_ |~ A (13)
V| cos’(6,)e,,(w/c)|2k,, ,— Ky, , |2

The total second-harmonic radiation power is

3273 w?sec?(6;)

3 1/2
C €y €y

5(20)= IN, eqe 1’154 . (14)
This result is the same as those obtained from the macro-
scopic polarization fields or the macroscopic electric
current density.>*"1° Here, for comparison with the
second-harmonic generation from a noncentrosymmetric
monolayer of molecules, we have defined the effective sur-
face density,

N N 1

_N , 15
s, eff %4 zkw’ (15)

z k2w,z
and the effective second-order molecular polarizability
(e%f)zls( —BGGXX+3Baﬁal3)(k2m‘em)(ezm'cw) . (16)

For the second-harmonic radiation in the transmission
direction (i.e., into the molecular fluid),

2k, , — ks, =Qw/c){e, €/2cos(6;)

_—[Ezw_fwsinz(e,')]l/z} )

and in the reflection direction,

2k, , — ks, =(20/c){€)/* cos(6;)
+[62w“6msin2(6,~)]1/2} .

We note that the radiated powers in two directions

are comparable as k,,-e,=(k,,—2k,)e,=—(2k,,

and the effective surface susceptibility

Xeg =N, eﬁae,f is reduced to



46 MULTIPOLAR CONTRIBUTIONS TO COHERENT OPTICAL . . . 2543
N APPENDIX A: FULLY ROTATIONAL AVERAGE
= = 5~ Baayy T IBagep) T (€200, - (17) OF TENSORS

V. DISCUSSION

We make the following observations. Since B~d,,a'?,
with d,, being the linear dimension of the molecule,

H=N, gaZ~N,a'”. Consequently, the coherent elec-
tric quadrupole contribution given by Eq. (14) is generally
comparable to a nominal surface SHG from monolayer
noncentrosymmetric molecules with a nonlinear polariza-
bility 2. 173

Furthermore, it is clear that the coherent radiation is
still much larger than the incoherent contribution.
Within the detection solid angle AQ=1/[(k,,)* 4], the
ratio of the incoherent power to the coherent power is
that of the total number of the irradiated molecules,
(N/V)AL (with L being the length of the irradiated part
of the molecular fluid) and the square of the number of
the irradiated molecules in the coherent volume,
(N/V)A/(2k,,—k,,,)]®. For L~1 cm, N/V
~10%/cm’, A~1cm?, 1/(2k,, ,—k,, ,)~107° cm, the
ratio is estimated to be ~ 10712,

Another electric quadrupole term arises from the pro-
cesses in which two fundamental photons are annihilated
by actions of electric dipole interaction, and one second-
harmonic photon is created through an electric quadru-
pole interaction.*!> One part of this additional term can
be easily incorporated by adding another term in both
Buaps and Bggg, in Eq. (10).'%!2 For the other part, stem-
ming from the abrupt change of the electric quadrupole
density (N/V)B at the interface, one may refer to the
treatment by Guyot-Sionnest and Shen (GS) in Ref. 10.
Our present 8 term corresponds to the x” term in GS’s
definition. One can proceed similarly with the calcula-
tion of the magnetic dipole contribution. Once again,
when the integration along the z axis is properly carried
out as in Appendix B, one obtains a coherent second-
harmonic radiation which is again comparable in magni-
tude to a nominal surface SHG. Since the rotational
average is performed over a third-rank tensor involving
k,Xe,, the total second-harmonic intensity from a mag-
netic dipole term is proportional to (k,-e,, )%

Finally, in the present calculation, we have assumed
that the two isotropic media have the same dielectric
constants. This can be easily extended to general cases
when €, ,7€,, by introducing the macroscopic local-
field factors as discussed in Ref. 2 by Shen.

VI. CONCLUSION

We reiterate that the bulk contribution due to the elec-
tric quadrupole and magnetic dipole responses of isotro-
pic bulk fluids to optical second-harmonic generation
from an interface is coherent and generally comparable to
a nominal surface or interface SHG. This conclusion can
be obtained equally by the calculation starting with the
macroscopic polarization fields or the macroscopic elec-
tric current density, and by the calculation based upon
molecular quantum electrodynamics.

According to Craig and Thirunamachandran,* the ful-
ly rotational average of the direction cosines connecting
two fourth-rank tensors, B, in the laboratory frame and
Bapys in the molecular frame, is given by

T

1 8qrsst 4 -1 —1 SaBSXB
) = = — —
It;:st,aﬁ)(é - 30 qu 8rt 1 4 1 8(1)(8ﬂ8
8udy | 171 —1 4 15 8,
(A1)

Thus, combined with k,,, e, ,€,, ¢, one finds
<qu )kZQ,quM,,ew’sew’,
= 35[(4Braps—Bapap— Buppa) (K2 €20 )(€,€,,)
* (= 2Baapst 3Bapap™ 3Bagpa)

X(k,,e,)(ey,e,)] . (A2)

From the transversality relation, k,, -e,,=0, the first
term in (A2) vanishes. The second term can be further
simplified from the fact that Bz, as defined by Eq. (6) is
symmetric with respect to the exchange of a and 8. We
then arrive at Eq. (10).

APPENDIX B

The integration on the right-hand side of Eq. (12) plays
the most important part in the present paper. The previ-
ous calculation by Andrews and Blake did not treat this
integral completely.'*!> The integral is partitioned into a
real part and an imaginary part:

f0+wdz exp[i(2k,, ,—k,, )z]=X +iY . (B1)
The real part gives the usual Krénecker § function
8(2k,, , —k,, .) since

X=1Re lf_+°°dz exp[i(2k, ,—k,, ,)z]

=md(2k, ,—ky,,) - (B2)
The imaginary part should be obtained as a limit defined
as

1 + o .
Y=— [fo dz exp[t(2km’z—k2a,’z—-7/)2]

4 y—0+

_ 1
B 2ka),z_k2w,z . (B3

By combining (B2) and (B3), we obtain Eq. (12).
It is easy to see that such an imaginary part vanishes
when we integrate from — o« to + o,

_i + o . _ _
y=1 [f dz expli (2K, ~kao 2 —7l2l]|

1 —

=0. (B4)
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