16-8. The Doppler Effect

(b) Firetruck moving

Moving Listener & Stationary Source

Speed of sound:vSpeed of moving listener towards source: v_L Speed of sound relative to listener: $v+v_L$ Source frequency: f_S Sound frequency received by listener:

$$f_L = \frac{v + v_L}{\lambda} = \frac{v + v_L}{v/f_s} = \frac{v + v_L}{v} f_s = (1 + \frac{v_L}{v}) f_s$$
 Moving towards source, $+ v_L, f_L > f_s$
away, $- v_L, f_L < f_s$

Approaching Source & Stationary Listener

$$\lambda' = \lambda - v_S T = vT - v_S T = \frac{v - v_S}{f_S}$$

Frequency received by a stationary listener

$$f_L = \frac{v}{\lambda'} = \frac{v}{(v - v_S)/f_S} = \frac{v}{v - v_S} f_S$$

Receding Source & Stationary Listener

Receding Source

Frequency received by a stationary listener

$$f_L = \frac{v}{\lambda'} = \frac{v}{(v + v_S)/f_S} = \frac{v}{v + v_S}f_S$$

Signs: Separately consider the source & listener

Whenever source / listener approaches the other, $f_L > f_S$
Approaching source, $-v_S$
Approaching listener, $+v_L$ Whenever source / listener recedes from each other, $f_L < f_S$
Receding source, $+v_S$
Receding listener, $-v_L$

Doppler Effect for Electromagnetic Wave

Taking into account relativistic effects

$$f_R = \sqrt{\frac{c - v}{c + v}} f_S$$

v positive: $f_R < f_S$, source is moving away from receiver

v negative: $f_R > f_S$, source is approaching receiver

16-9. Shock Waves & Sonic Boom

Mach number v_{obj}/v_{snd}

>1 for supersonic speeds

Credit: Ensign John Gay USS Constellation, US Navy