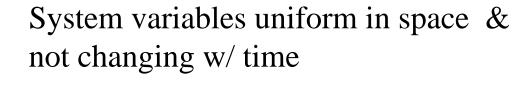
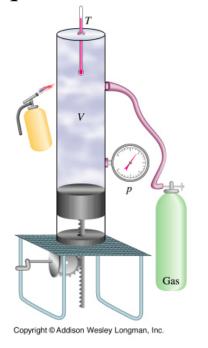
Ch 18. Thermal Properties of Matter


18-1. Equations of State


State variables: Variables that define the state of a system

e.g., pressure p, volume V, temperature T,

mass m or mole number n.

Equilibrium state:

Equation of state:

The relationship among p, V, T, m(n)

Study analytical expressions for simple cases.

Ideal Gas Law

$$pV=n_{mole}RT$$

Universal Gas Constant

Mole number

R=8.315 J/(mol-K) = 0.08206 L atm/(mol-K)

n_{mole}= mass (gram)/Molecular mass (g/mol)

At constant T

pV = constant

Boyle's law

 $p_1V_1 = p_2V_2$

At constant P

 $V \propto T$

Charles' law

 $V_1/V_2 = T_1/T_2$

At constant V

 $p \propto T$

Gay-Lussac's law

 $p_1/p_2 = T_1/T_2$

General

pV/T=constant

 $p_1 V_1 / T_1 = p_2 V_2 / T_2$

Standard Temperature & Pressure (STP):

 $0^{\circ}C$

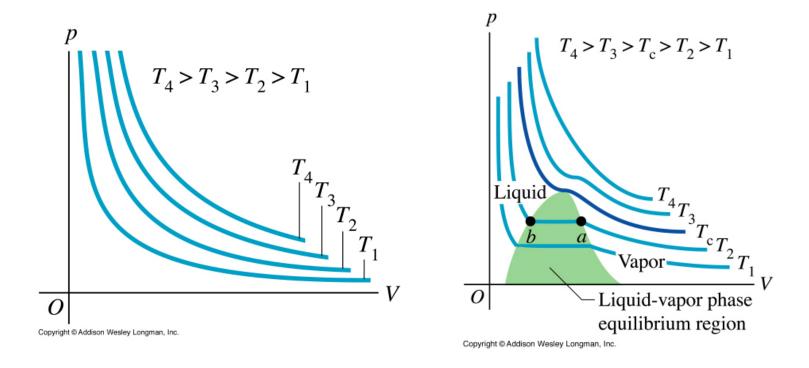
 $1atm = 1.013 \times 10^5 \text{N/m}^2 = 1.013 \times 10^5 \text{Pa}$

Avogadro's Number

Avogadro's hypothesis:

Equal volumes of gas at the same *p* and T contain equal number of molecules.

Number of molecules in 1 mole:


$$N_A = 6.02 \times 10^{23}$$

Ideal Gas law:
$$pV=nRT$$

= $(N/N_A)RT$
= $N(R/N_A)T$
= Nk_BT

Boltzmann's constant

$$k_B = R/N_A = 1.38 \times 10^{-23} \text{ J/K}$$

Liu UCD Phy9B 07

pV-Diagrams

Each curve, representing behavior at a specific T, is an isotherm. Isolated system of ideal gas, along each isotherm, pV=constant.