15-8. Normal Modes

A string with both ends fixed, length L, for standing wave to exist: $L = n \frac{\lambda}{2}$ n=1, 2, 3, ...

Standing wave wavelength

$$\lambda_n = \frac{2L}{n}$$

Fundamental frequency

$$f_1 = \frac{v}{\lambda_1} = \frac{v}{2L}$$

Harmonics, or overtones if *n*>1

$$f_n = \frac{v}{\lambda_n} = n\frac{v}{2L} = nf_1$$

nth harmonic is (n-1)th overtone

Wave function

$$y_n(x,t) = A_{SW} \sin k_n x \sin \omega_n t$$

Harmonics

Since
$$v = \sqrt{F/\mu}$$

f _	v		1		\overline{F}
$J_1 -$	$\overline{2L}$	_	2L	1	$\overline{\mu}$

for string fixed at both ends

Normal mode: a motion in which all particles of the system move sinusoidally with the same frequency.

Resonant frequency: frequency at which standing waves are produced

Multiple resonant frequencies / normal modes for a string Single resonant frequency for a spring / pendulam

Liu UCD Phy9B 07