Convex Mirrors

(a)

Mirror equation still holds, but:
$f \& R$ now negative
Virtual image, always upright

Summary: Signs

Object height y : + 亿
Image height y : + upright $\mathbb{\text { - inverted } \|}$
Object distance s \& Image distance s’

+ on the reflecting side
- behind the reflecting side

Concave mirror: $R \& f \quad+$
Convex mirror: $R \& f$
Magnification $m=y^{\prime} / \mathrm{y}=-\mathrm{s}^{\prime} / \mathrm{s}$

$$
\begin{aligned}
& |\mathrm{m}|>1 \text {, magnified; }|\mathrm{m}|<1 \text { shrunk } \\
& \mathrm{m}:+ \text { upright; - inverted }
\end{aligned}
$$

Example

Always draw a ray diagram with 2 or 3 easy-to-draw rays Keep track of signs in mirror equation
Compare \& see if make sense

34-3. Refraction at a Spherical Surface

$$
\frac{n_{a}}{s}+\frac{n_{b}}{s^{\prime}}=\frac{n_{b}-n_{a}}{R}
$$

$$
m=\frac{y^{\prime}}{y}=-\frac{n_{a} s^{\prime}}{n_{b} s}
$$

For plane surface, $\mathrm{R}=\infty$

$$
\frac{n_{a}}{s}+\frac{n_{b}}{s^{\prime}}=0
$$

$$
m=1
$$

$\mathrm{s}>0$: when object is on the incoming side of the surface (real object) $s^{\prime}>0$: when image is on the outgoing side of the surface (real image) $\mathrm{R}>0$: when center of curvature C is on the outgoing side of the surface

34-4. Thin Lenses

(a) Converging lenses

(b) Diverging lenses

f same on both side + for converging lenses - for diverging lenses

Ray Diagram for Thin Lenses

Ray 1 goes out from Q parallel to the axis \& passes through F_{2}.
Ray 2 goes through the center of the lens unaffected
Ray 3 goes through F_{1} and refracts parallel to the axis.

Lensmaker's Equation

Object-image relation

$$
\begin{aligned}
& \frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} . \quad m=\frac{y^{\prime}}{y}=-\frac{s^{\prime}}{s} \\
& \text { uation } \\
& \frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
\end{aligned}
$$

Lensmaker's equation

Example: n=1.52
Double convex, radius is 20 cm , f ?
Double concave?

Ch 34-5 - 7. Optical Instruments

Please read text on your own.

