Ch 33. The Nature and Propagation of Light

33-1. Nature of Light

Light has both wave and particle properties

Particle-like: emission, absorption...

Wave-like: propagation, interference...

Speed of light $c=2.9979 \times 10^8 \text{ m/s} \sim 3.0 \times 10^8 \text{ m/s}$

Geometric & Physical Optics

Ray: an imaginary line along the wave traveling direction In a particle theory of light

> Light travels in straight-line paths called light rays Rays represent the paths of particles

Branch of optics dealing with ray model – geometric optics wave behavior – physical optics

33-2. Reflection & Refraction

Refraction

Index of refraction of a material:

 $n=c/v \ge 1$ $c=3.0x10^8$ m/sv:speed of light in vacuumspeed of light in the medium

Light frequency doesn't change going from one material to another

 $\lambda = \lambda_o / n$

Higher n	Vacuum & air:	n=1.00
slower v smaller λ	Water	n=1.33
	Glass	n=~1.4-1.6

Liu UCD Phy9B 07

Law of Refraction

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$

General Case: Across Interface of Two Transparent Materials

Incident, reflected, refracted rays and the normal to the surface all lie in the same plane.

33-3. Total Internal Reflection

 $n_b < n_a$

$$\sin \theta_C = \frac{n_b}{n_a} \sin 90^\circ = \frac{n_b}{n_a}$$

When $\theta > \theta_C$, all lights are reflected, no refraction Only happens when light goes from high *n* to low *n* material

Applications of Total Internal Reflection

33-4. Dispersion

n=c/v, depends on wavelength λ

Index of refraction (n)

