Ch 33. The Nature and Propagation of Light

33-1. Nature of Light

Light has both wave and particle properties
Particle-like: emission, absorption...

Wave-like: propagation, interference...
Speed of light $\mathrm{c}=2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s} \sim 3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Geometric \& Physical Optics

Ray: an imaginary line along the wave traveling direction In a particle theory of light

Light travels in straight-line paths called light rays
Rays represent the paths of particles

Branch of optics dealing with ray model - geometric optics wave behavior - physical optics

33-2. Reflection \& Refraction

Angle of incidence θ_{i} Angle of reflection θ_{r}

$$
\begin{aligned}
& \text { Law of reflection: } \\
& \qquad \theta_{\mathrm{i}}=\theta_{\mathrm{r}}
\end{aligned}
$$

Diffusive reflection
Specular reflection

Refraction

Index of refraction of a material:

$$
\begin{aligned}
& \mathrm{n}=\mathrm{c} / \mathrm{v} \geq 1 \\
& \mathrm{c}=3.0 \times 10 \\
& \mathrm{v}:
\end{aligned}
$$

$$
\mathrm{c}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad \text { speed of light in vacuum }
$$

speed of light in the medium

Light frequency doesn't change going from one material to another $\lambda=\lambda_{\mathrm{o}} / \mathrm{n}$

Higher n
slower v
smaller λ

Vacuum \& air:
$\mathrm{n}=1.00$
Water
$\mathrm{n}=1.33$
Glass$\mathrm{n}=\sim 1.4-1.6$

Law of Refraction

Snell's Law

$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$

If $n_{1}>n_{2}$, then $\theta_{1}<\theta_{2}$

General Case: Across Interface of Two Transparent Materials

(a)

(c)

Incident, reflected, refracted rays and the normal to the surface all lie in the same plane.

33-3. Total Internal Reflection

$$
n_{b}<n_{a}
$$

$$
\sin \theta_{C}=\frac{n_{b}}{n_{a}} \sin 90^{\circ}=\frac{n_{b}}{n_{a}}
$$

When $\theta>\theta_{\mathrm{C}}$, all lights are reflected, no refraction
Only happens when light goes from high n to low n material

Applications of Total Internal Reflection

Porro Prism

Fiber Optics

33-4. Dispersion

$n=c / v$, depends on wavelength λ

