Ch 16. Sound & Hearing

16-1. Sound Waves

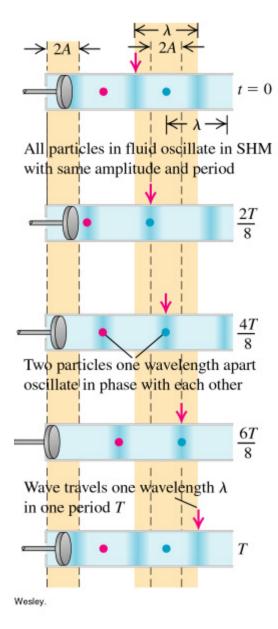
Frequency: Pitch

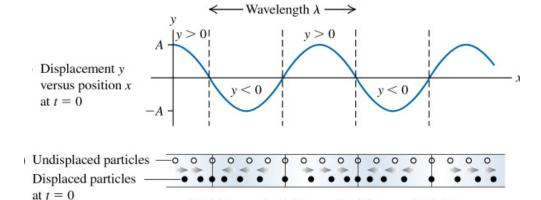
Audible range: 20Hz - 20,000Hz

Ultrasonic: f > 20,000 Hz, Sonar

NOT

Supersonic (speed > sound speed)


Infrasonic: f < 20 Hz


Earthquake

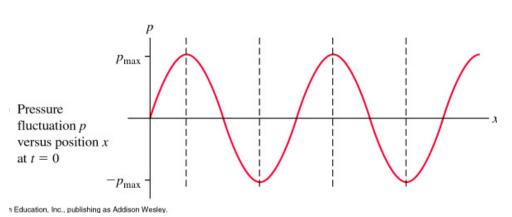
Longitudinal Wave

Particles

pile up:

Particles

pulled apart:


Compression Rarefaction Compression Rarefaction

Particles

pile up:

Particles

pulled apart:

Pressure fluctuation extremes Zero displacement Zero pressure fluctuation Displacement extremes Liu UCD Phy9B 07

16-2. Speed of Sound

Depends on

Propagating material

Faster in solids than in liquids and gases

Temperature

Same for all frequencies, and $v = \lambda f$

In air, at 20°C, v~340 m/s

MATERIAL	SPEED OF SOUND (m/s)
Gases	
Air (20°C)	344
Helium (20°C)	999
Hydrogen (20°C)	1330
Liquids	
Liquid helium (4 K)	211
Mercury (20°C)	1451
Water (0°C)	1402
Water (20°C)	1482
Water (100°C)	1543
Solids	
Aluminum	6420
Lead	1960
Steel	5941

Please read text on your own.

16-3. Sound Intensity (Loudness)

Intensity
$$I = \frac{\text{energy/time}}{\text{area}} = \frac{\text{power}}{\text{area}}$$
, in watts/meter² (W / m²)

Intensity level: β (in dB)=10 log (I/I₀)

 $I_0=1.0x10^{-12}$ W/m², $\beta=0$, Threshold of hearing

I=1W/m², β =120 dB, Threshold of pain

10 dB increase in intensity level ~ 10 times increase in intensity doubling in loudness

Log Exercise

$$log a = log_{10} a$$

 $if log a = x, then a = 10^{x}$
 $log a^{b} = b log a$
 $log a + log b = log ab$
 $log a - log b = log (a/b)$

$$log 1=0$$

 $log 10 = 1$
 $log 100 = log 10^2 = 2 log 10 = 2$