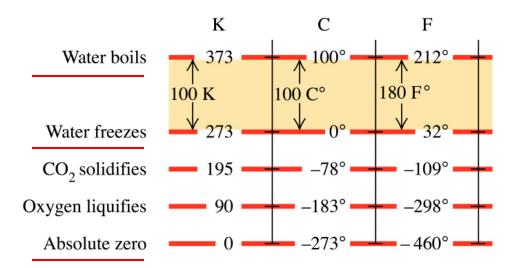
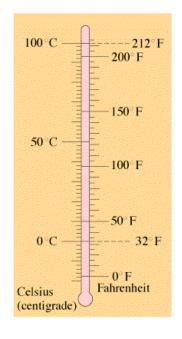
Ch 17. Temperature & Heat

17.1-3. Temperature

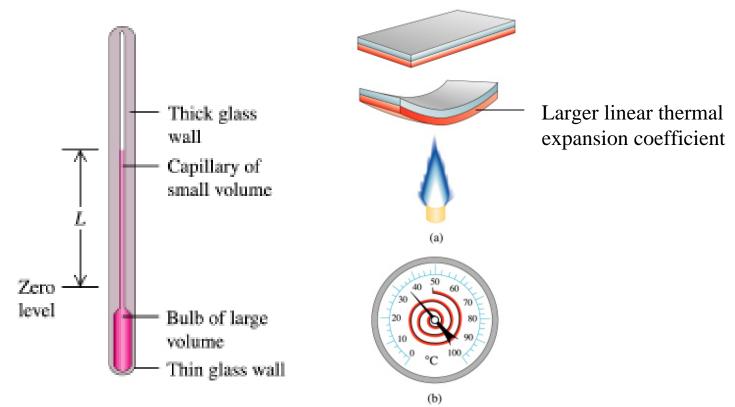
A measure of how hot /cold an object is

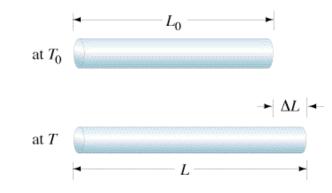

Temperature Scale


Celsius (centigrade)°CFahrenheit°FAbsolute (Kelvin, Scientific work)K

 ΔT in C^o, F^o, or K

Temperature Conversion


 $T_{C}=5/9 (T_{F}-32^{\circ})$ $T_{F}=9 T_{C}/5+32^{\circ}$ $T_{K}=T_{C}+273.15$


Liu UCD Phy9B 07

Thermometer

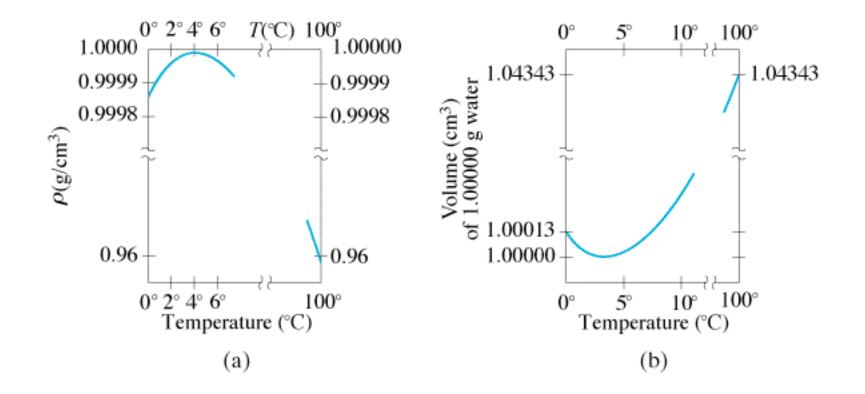
Copyright @ Addison Wesley Longman, Inc.

17-4. Thermal Expansion

Most substances: Expand when heated Contract when cooled

$$\frac{\Delta L}{L_0} = \alpha \Delta T \qquad L = L_0 (1 + \alpha \Delta T)$$

 α - Coefficient of linear expansion


$$\frac{\Delta V}{V_0} = \beta \Delta T$$

 β – Coefficient of volume expansion

Glass, $\beta \sim 10^{-5}/C^{\circ}$ Mercury, $\beta \sim 10^{-4}/C^{\circ}$

Liu UCD Phy9B 07

Anomalous Behavior of Water Below 4°C

Water expands as it cools from 4°C to 0°C, expands more upon freezing. In a pool of water, it freezes from top.

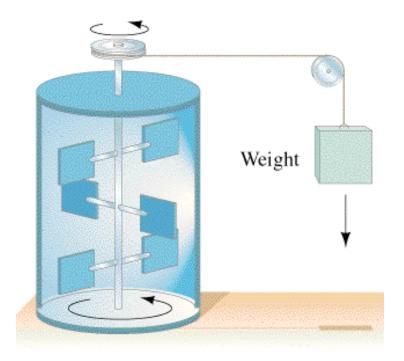
Liu UCD Phy9B 07

17-5. Quantity of Heat

Common units:

calorie (cal): amount of heat necessary to raise the temperature of 1 gram of water by 1C°

kilocalorie (kcal) 1 kcal =1000 cal


Calorie dietary usage, =1 kcal

British thermal unit (btu)

amount of heat necessary to raise the temperature of 1 lb of water by 1F°

1btu = 252 cal

Mechanical Equivalent of Heat

4.186 J= 1 cal

Heat is energy that's transferred from one body to another because of a difference in temperature.

Like water, flows from high to low (temperature).

Not the energy a body contains.

Specific Heat Capacity

Heat transfer $Q = mc \Delta T$

Specific heat (capacity) *c*: J/kg-C° or J/kg-K

k	kcal/kg -C°	J/kg -C	
Water	1	4200	
Wood	0.4	1700	
Aluminum	0.22	900	
Iron	0.11	450	
Lead	0.031	130	

Molar Specific Heat

Unified atomic mass unit (u) ¹²C atom has exactly 12u $1u = 1.66 \text{ x } 10^{-27} \text{ kg}$

Atomic / molecular mass

H atoms	1u	H ₂ molecules	2u
N ₂ molecules	28u	O_2 molecules	32u
\overline{CO}_2 molecules	44u	-	

1 mole = amount of substance that contains as many atoms or molecules as there are in 12 grams of 12 C.

Mole number

n = m/M= mass (gram)/Molecular mass (g/mol)

Molar specific heat: C=Mc

In molar form: $Q = mc\Delta T = nMc\Delta T = nC\Delta T$

Calorimetry

Isolated system: Energy conserved

Heat Lost = Heat Gain

Method 1:

Keep heat positive $\Sigma m_i c_i \Delta T_i = \Sigma m_j c_j \Delta T_j$

Heat Gain= $mc(T_f - T_i)$ Heat lost = $mc(T_i - T_f)$

Method 2:

Keep sign consistent $\sum m_k c_k \Delta (T_f T_i)_k = 0$