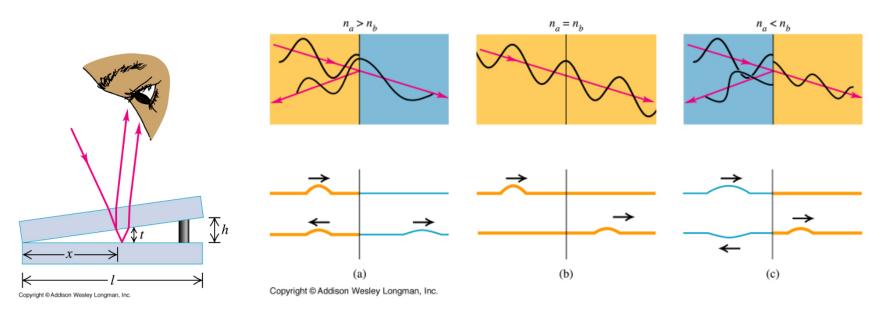

35-4. Interference in Thin Films

Normal incidence


Copyright @ Addison Wesley Longman, Inc.

Constructive reflection, no phase shift $2t = m\lambda$, m=0, 1, 2, 3...

Destructive reflection $2t = (m+1/2)\lambda$, m=0, 1, 2, 3...

λ: Light wavelength in the film
λ_o: Light wavelength in air
λ = λ_o/n

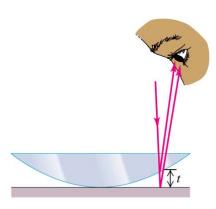
Phase Shift at Interface

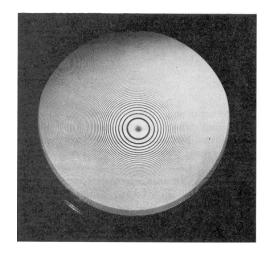
When $n_a < n_b$, phase shift of π , or half-wavelength, occurs.

Thus Destructive reflection $2t = m\lambda$, m=0, 1, 2, 3... Constructive reflection $2t = (m+1/2)\lambda$, m=0, 1, 2, 3...

Pay attention to *n* across interfaces

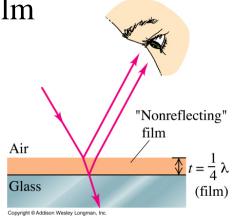
Liu UCD Phy9B 07


Phase Difference & Thin Film Interference

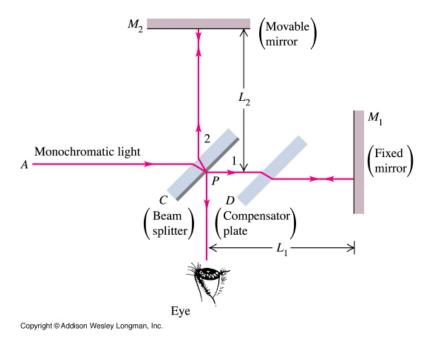

Phase Difference		r - r	þ		
Path difference		$\frac{r_2 - r_1}{\lambda} = \frac{1}{2}$			
Phase change a	t the interface:	π			
(if reflects off an optically denser material)					
Normal incidence	No phase shi		One of the two wave		

	or both have π -shift	has π -shift
$2t = m\lambda$	Constructive reflection	Destructive
$2t = (m+1/2) \lambda$	Destructive	Constructive
m=0,1,2,3		

Applications


Newton's Ring

Reflection from the top surface?


Nonreflecting film

What should film *n* bew.r.t. those of air & glass?Eliminate several wavelengths?

Liu UCD Phy9B 07

35-5. The Michelson Interferometer

Move M_2 by y Path differs by 2y

Correspondingly *m* fringes moved

Then $2y=m\lambda$, or $\lambda=2y/m$

Precise measurement of wavelength

Tested the dependence of speed of light on the motion of the Earth

Albert Abraham Michelson, Nobel Prize, 1907

Liu UCD Phy9B 07