Ch15. Mechanical Waves

15-1. Introduction

Wave pulse

Source: disturbance + cohesive force between adjacent pieces A wave is a disturbance that propagates through space Mechanical wave: needs a medium to propagate

Distinctions

Wave velocitv vs. particle velocitv

Wave can travel \& Medium has only limited motion
Waves are moving oscillations not carrying matter along
What do they carry/transport?
Disturbance \& Energy

Types of Waves

Transverse wave

Longitudinal wave

More Examples

Sound Wave: Longitudinal

Drum
membrane
Compression Expansion

Liu UCD Phy9B 07

15-2. Periodic Waves

Continuous / Periodic Wave

Caused by continuous/periodic disturbance: oscillations
Characteristics of a single-frequency continuous wave

Wavelength: distance between two successive crests or any two successive identical points on the wave
Frequency f : \# of complete cycles that pass a given point per unit time
Period T :
1/f

Wave Velocity

All particles op string oscillate in SHM with same amp litude and period

Two particles one wavelength apart oscillate in phs ve with each other

$$
v=\lambda / T \quad=\lambda f
$$

Wave travels one wavelength λ in one period T

Different from particle velocity
Depends on the medium in which the wave travels

15-3. Mathematical Description

Approach:

extrapolate motion of a single point to all points
from displacement, derive velocity, acceleration, energy...

Recall SHM: Position of Oscillator

$$
\cos \theta=x / A \quad \theta=\omega t
$$

$$
\omega \text { - angular frequency }
$$

(radians / s)

$$
=2 \pi / \mathrm{T}
$$

$$
=2 \pi f
$$

Motion of One Point Over Time

Rewriting y as the particle displacement:

Motion of Any Point at Any Time: Wave Function

For wave moving in $+x$ direction

$$
\begin{array}{r}
y(x, t)=A \cos \omega\left(t-\frac{x}{v}\right)-\text { Motion at } x \text { trails } x=0 \text { by a time of } x / v \\
y(x, t)=A \cos 2 \pi f\left(t-\frac{x}{v}\right)=A \cos 2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)=A \cos 2 \pi\left(\frac{x}{\lambda}-\frac{t}{T}\right)
\end{array}
$$

Wave number $\quad \frac{k=\frac{2 \pi}{\lambda}}{\omega=v k}$

$$
y(x, t)=A \cos (k x-\omega t)
$$

For wave moving in $-x$ direction

$$
y(x, t)=A \cos (k x+\omega t) \quad \text { Phase: } k x \pm \omega t
$$

Example

EXAMPLE 1. Suppose that at an initial time $t=0$, the shape of a wave pulse on a string is represented by the wavefunction

$$
y=f(x)=\frac{0.03 x}{1+x^{4}} \quad \text { at initial time } t=0
$$

where y and x are in meters. Suppose that this wave pulse has a velocity $v=$ $2 \mathrm{~m} / \mathrm{s}$ toward the positive x direction. What function represents the wave pulse at time t ? Plot this function when $t=1 \mathrm{~s}$.

